Further analysis of the (primal) simplex method

- Initializing the primal simplex method
- Computational efficiency of the simplex method
 - Implementation of a pivot (an iteration)
 - Total number of iterations required

How to find a starting BFS (or diagnose infeasibility)?

- Easy if LP has form $\min \{ c^T x : Ax \leq b, \ x \geq 0 \}$ with $b \geq 0$:
 $\min c^T x + 0^T z$
 s.t. $Ax + l z = b$
 $x, \ z \geq 0$

 $x = 0, \ z = b$ is an obvious starting BFS with $B = I$

- For LP $\min \{ c^T x : Ax = b, \ x \geq 0 \}$ with $b \geq 0$, consider an auxiliary problem with artificial variables y:
 $\begin{align*}
 (AUX) \min & \quad 0^T x + e^T y \\
 \text{s.t.} & \quad Ax + l y = b \\
 & \quad x, \ y \geq 0
 \end{align*}$

 \triangleright LP is feasible iff optimal cost of (AUX) is 0
 \triangleright $x = 0, \ y = b$ is an obvious starting BFS with $B = I$; solve with primal simplex method
 \triangleright If in the optimal BSF of (AUX) found by simplex all y_i’s are non-basic, we have a BFS of the original LP
Driving artificial variables out of the basis

- Suppose value of (AUX) is 0, but some y_i's are still basic at optimality, e.g.,

$$B = \begin{bmatrix} A_{B(1)} & A_{B(2)} & A_{B(3)} & A_{B(4)} & e_2 & e_7 & e_4 & e_3 \end{bmatrix}$$

- Suppose, wolog, $x_{B(1)}, \ldots, x_{B(k)}$ with $k < m$ are basic, and $(k + 1)$st through mth basic variables are y_i's

- If $\exists j \notin B$ be such that $(B^{-1}A_j)_{k+1} \neq 0$, then
 - **Claim:** A_j is linearly independent from $A_{B(1)}, \ldots, A_{B(k)}$
 - Change the basis: x_j enters, $y_{B(k+1)}$ leaves
 - We are still at the same BFS, since $x_j = y_{B(k+1)} = 0$, but now the basis has one more “real” variable; repeat until all y_i's are out of the basis

- What if the entire $(k + 1)$st row of $B^{-1}A$ is 0?
 - Then $(k + 1)$st constraints is redundant, and can be eliminated along with corresponding artificial variable

Two-phase simplex method

Phase I:

- Convert the LP into an equivalent one in standard form
- If necessary, multiply constraints by -1 so that $b \geq 0$
- Introduce artificial variables y_1, \ldots, y_m and apply primal simplex method (with appropriate anti-cycling rule) to the auxiliary problem
- If optimal value of aux. problem is positive, stop: LP is infeasible
- Otherwise, LP is feasible. Use the above technique to
 - Eliminate redundant (linearly dependent) constraints from LP
 - Obtains a starting primal-feasible basis for LP (whose A now has full row rank)

Phase II:

- Let the final basis obtained in Phase I be the initial basis for LP
- Apply primal simplex method (with appropriate anti-cycling rule) to LP
Algorithms and operation counts: Big-O notation

Comparing running time of algorithms:

- Running time may depend on programming and hardware
- Adequate approximation is provided by the number of arithmetic operations required by the algorithm

Definition 1.2 (a)

Let \(f \) and \(g \) be functions that map positive numbers to positive numbers. We say that \(f(n) = O(g(n)) \) if

\[
\exists n_0 > 0, \exists c > 0 : f(n) \leq cg(n) \forall n \geq n_0.
\]

- \(4n^2 + 5n = O(n^2) \)
- Suppose \(n \geq m \)
 - \(O(m + n) = O(n) \); \(O(m^3 + mn + m + n) = O(m^3 + mn) \)
- Inner product of two \(n \)-vectors: \(O(n) \) operations
- Solving an \(n \times n \) system of linear equations: \(O(n^3) \) operations
- All of the above — polynomial rates of growth, compare with exponential: \(O(2^n) \)

Recall: An iteration of the (primal) simplex method

1. Let \(B \) be a primal feasible basis
2. Compute \(\bar{c}_j = c_j - c_B^T B^{-1} A_j \forall j \in N. \) If \(\bar{c} \geq 0 \) — terminate; optimal solution found. Else, choose \(j : \bar{c}_j < 0. \)
3. Let \(d \) be the \(j \) basic direction at \(x: \)

\[
d_i = 0, \ i \in N, \ i \neq j, \ d_j = 1, \ d_B = (d_B(1), \ldots, d_B(m))^T = -B^{-1}A_j
\]

If \(d_B \geq 0 \), terminate; LP is unbounded.
4. Else, let

\[
\theta^* = \min_{i : d_B(i) < 0} \frac{x_B(i)}{-d_B(i)}, \ I = \arg\min_{i : d_B(i) < 0} \frac{x_B(i)}{-d_B(i)}
\]

5. Let \(l \) be as above, \(\theta^* = \frac{x_B(l)}{-d_B(l)} \). Form a new basis by replacing \(B(l) \) with \(j. \)
Implementation of the Simplex Method

Naive: no additional information retained/updated from iteration to iteration

- At the beginning of the iteration have indices $B(1), \ldots, B(m)$
- Form B and compute $p^T = c_B^T B^{-1}$ (by solving system $B^T p = c_B$ for p) \((O(m^3))\) operations
- Compute reduced costs $\bar{c}^T = c^T - p^T A$ \((\text{between } O(m^2) \text{ and } O(nm))\) operations
 - Depending on the pivoting rule used, may compute them one at a time, or may have to compute all
- Select A_j to enter the basis and compute $u = B^{-1} A_j$ (by solving $Bu = A_j$) \((O(m^3))\) operations
- Determine θ^*, find the variable l leaving the basis and update the basic indices \((O(m))\) operations

- Memory requirements: $O(m)$
- Computational effort: $O(m^3 + mn)$
 - Except for special cases with very simple structure of B, e.g., network flow problems

Implementation of the Simplex Method

Full Tableau Method

Maintains a full representation of the LP *with respect to the current basis*:

\[
\min 0^T x_B + (c_N^T - c_B^T B^{-1} A_N) x_N + c_B^T B^{-1} b \\
\text{s.t.} \quad I x_B + B^{-1} A_N x_N = B^{-1} b \\
\quad x \geq 0
\]

- At the beginning of each iteration have:

\[
\begin{pmatrix}
-c_B^T B^{-1} b & 0^T & c_N^T - c_B^T B^{-1} A_N \\
B^{-1} b & I & B^{-1} A_N
\end{pmatrix}
\]

- Select j to enter the basis \((\text{no operations!})\)
- Determine θ^*, find the variable l leaving the basis \((O(m))\) operations
- Manipulate the tableau to update it for the new basis \((O(mn))\) operations

- Memory requirements: $O(mn)$
- Computational effort: $O(mn)$
Implementation of the simplex method
Revised: B^{-1} retained/updated

- At the beginning of the iteration have basic columns $A_{B(1)}, \ldots, A_{B(m)}$, associated BFS x, and B^{-1}
- Compute $p^T = c^T_B B^{-1}$ (by matrix-vector multiplication) $O(m^2)$
- Compute reduced costs $\bar{c}^T = c^T - p^T A$ $O(nm)$
- Select A_j to enter the basis and compute $u = B^{-1} A_j$ $O(m^2)$
- Determine θ^*, find the variable $B(l)$ leaving the basis and update the basic columns and corresponding BFS $O(m)$
- Compute \bar{B}^{-1}, where \bar{B} is the new basis matrix, from B^{-1} and A_j $O(m^2)$
 - How? See the following slides
- Memory requirements: $O(m^2)$
- Computational effort: $O(m^2 + mn) = O(mn)$

Rank-1 Update Matrix: Sherman-Morrison Formula

- If $u, v \in \mathbb{R}^m$, then $uv^T \in \mathbb{R}^{m \times m}$, where $(uv^T)_{ij} = u_i v_j$
 - Called a “rank-1 matrix” — for obvious reasons
- Let $M \in \mathbb{R}^{m \times m}$ be a matrix.
- Suppose that we know M^{-1}
- Let $\tilde{M} = M + uv^T$. We want to find \tilde{M}^{-1}
- The Sherman-Morrison Formula: \tilde{M} is invertible if and only if $v^T M^{-1} u \neq -1$, in which case
 $$\tilde{M}^{-1} = \left[\mathbf{I} - \frac{M^{-1} uv^T}{1 + v^T M^{-1} u} \right] M^{-1}$$
- Compute $q = M^{-1} u$ and $r^T = v^T M^{-1}$ $O(m^2)$
- Compute $\alpha = 1 + v^T M^{-1} u = 1 + v^T q$ $O(m)$
- Now $\tilde{M}^{-1} = M^{-1} - \frac{q r^T}{\alpha}$ $O(m^2)$
Back to updating the basis

\[\mathbf{B} = \begin{bmatrix} \mathbf{A}_{B(1)} & \cdots & \mathbf{A}_{B(l-1)} & \mathbf{A}_{B(l)} & \mathbf{A}_{B(l+1)} & \cdots & \mathbf{A}_{B(m)} \end{bmatrix} \]

\[\tilde{\mathbf{B}} = \begin{bmatrix} \mathbf{A}_{B(1)} & \cdots & \mathbf{A}_{B(l-1)} & \mathbf{A}_j & \mathbf{A}_{B(l+1)} & \cdots & \mathbf{A}_{B(m)} \end{bmatrix} \]

Note that

\[\tilde{\mathbf{B}} = \mathbf{B} + (\mathbf{A}_j - \mathbf{A}_{B(l)}) \times (\mathbf{e}_l)^T \]

where \(\mathbf{e}_l \) is the \(l \)th unit vector

\[\tilde{\mathbf{B}} = \mathbf{B} + \mathbf{u} \mathbf{v}^T \]

with

\[\mathbf{u} = (\mathbf{A}_j - \mathbf{A}_{B(l)}) \quad \text{and} \quad \mathbf{v} = (\mathbf{e}_l) \]

— can use rank-1 update formula to compute \(\tilde{\mathbf{B}}^{-1} \)

Simplex method(s): Remaining unanswered question

- How many iterations of the simplex method are required to solve an LP instance?
 - Will discuss later, as part of general discussion of computational efficiency of algorithms and computational complexity of problems