Simplex method: outline

- The Simplex Method is a family of algorithms for solving LPs in standard form (and their duals)
- Goal: identify an optimal basis, as in Definition 3.3
- Versions we will consider:
 - Primal
 - Dual (along with LP sensitivity analysis)
 - Parametric primal-dual

Simplex method(s) for solving LPs in standard form

- Idea behind the Simplex method(s) for LPs in standard form:
 - Start at a basis B
 - Move to an adjacent basis
 - Repeat until
 - an optimal basis (Definition 3.3) is reached, or
 - lack of optimal solution is proven
- Questions:
 - What initial basis do we choose?
 - How do we move between adjacent bases?
 - How can we guarantee that the process terminates with a correct conclusion?
 - How long will it take?
Primal Simplex Method

- Assumptions:
 - The primal LP is feasible
 - A basis associated with a BFS is available

- The Primal Simplex Algorithm
 - Start at a BFS x and associated basis B
 - Calculate $\bar{c}^T = c^T - c^T_B B^{-1} A$
 - If $\bar{c} \geq 0$, stop — current basis is optimal. Otherwise, pick some $j \in N$ with $\bar{c}_j < 0$.
 - Move to an adjacent feasible basis in which A_j is a basic column.
 - Repeat until an optimal basis is reached, or unboundedness (of the LP) is proven.

Feasible directions and basic directions

(LP) $\min c^T x \text{ s.t. } x \in P; \quad P = \{x : Ax = b, \ x \geq 0\}$

Definition 3.1

Let $x \in P$. $d \in \mathbb{R}^n$ is a **feasible direction** at x if $\exists \theta > 0$: $x + \theta d \in P$.

- **Special case:** x is a BFS with basis B; j — non-basic index
- d is the jth **basic direction** at x if
 $$d_i = 0, \ i \in N, \ i \neq j, \ d_j = 1, \ d_B = (d_B(1), \ldots, d_B(m))^T = -B^{-1} A_j$$

- **Note:**
 - If x is non-degenerate, d is a feasible direction
 - If x is degenerate, d may not be a feasible direction!

- **Effect on the cost function of moving in jth basic direction:** jth **reduced cost**
 $$\bar{c}_j = c^T d = c^T_B d_B + c_j = c_j - c^T_B B^{-1} A_j$$
An iteration of the (primal) simplex method: a pivot

1. Let \(x = (x_B; x_N) = (B^{-1}b; 0) \) be a BFS, and \(B \) — the associated basis (assume for now \(x \) is non-degenerate)
2. Compute \(\bar{c}_j = c_j - c_B^T B^{-1} A_j \) \(\forall j \in N \). If \(\bar{c} \geq 0 \) — terminate; optimal solution found. Else, choose \(j : \bar{c}_j < 0 \).
3. Let \(d \) be the \(j \) basic direction at \(x \):
 \[
d_i = 0, \ i \in N, \ i \neq j, \ d_j = 1, \ d_B = (d_{B(1)}, \ldots, d_{B(m)})^T = -B^{-1}A_j
 \]
 If \(d_B \geq 0 \), terminate; LP is unbounded.
4. Else, let
 \[
 \theta^* = \min_{i: d_B(i) < 0} \frac{x_B(i)}{-d_B(i)}, \ I = \arg\min_{i: d_B(i) < 0} \frac{x_B(i)}{-d_B(i)}
 \]
5. Let \(l \) be as above, \(\theta^* = \frac{x_B(l)}{-d_B(l)} \). Form a new basis matrix by replacing \(A_B(l) \) with \(A_j \) (\(x_l \) leaves, and \(x_j \) enters, the basis). The values of the new basic variables:
 \[
y_j = \theta^*, \ y_B(i) = x_B(i) + \theta^* d_B(i), \ i \neq l
 \]

“Sanity checks”

Theorem 3.2

(a) The columns \(A_B(i), \ i \neq l \) and \(A_j \) are linearly independent and therefore, the matrix constructed in step 5 is a basis.

(b) The vector \(y = x + \theta^* d \) is a basic feasible solution associated with the above matrix.

Theorem 3.3

Assume that the feasible set is nonempty and that every basic feasible solution is nondegenerate. Then the simplex method terminates after a finite number of iterations. At termination, there are the following two possibilities:

(a) We have an optimal basis \(B \) and an associated basic feasible solution which is optimal.

(b) We have found a vector \(d \) satisfying \(Ad = 0, \ d \geq 0, \ c^T d < 0 \), and the problem is unbounded.
What if there are degenerate BFSs?

- If current BFS x is degenerate, then it is possible that $\theta^* = 0$.
- It is still possible, however, to perform a change of basis, although we will stay at the same solution, and see no improvement in the objective.
- It is possible that a series of iterations as above will cause us to “loop” through a series of bases, returning to the original one: *cycling*.
- Can be avoided by appropriate *pivoting rules*.

Pivot selection

How to choose j and l (if there are ties) in steps 2 and 5 of the algorithm? Some possible *pivoting rules* (out of many others):

- Choose $j = \text{argmin } \bar{c}_j$ — fastest rate of decrease of the cost.
- Choose $j = \text{argmax } \theta^*_j |\bar{c}_j|$ — largest cost decrease.
- Choose the smallest j with $\bar{c}_j < 0$ — less computation. If the *smallest subscript* rule is also used to break ties in choosing l, no cycling occurs in degenerate problems
 - Thus, with appropriate pivoting rules, simplex method will find an optimal basis matrix in any standard form LP with finite optimal value!
- Lexicographic pivoting rule (See Section 3.4) — another anti cycling pivoting rule.
Unanswered (for now) questions

- How do we find a starting feasible basis, or find out/prove that the LP is infeasible?
- What is the computational efficiency of the (Primal) Simplex Method:
 - Time to execute 1 iteration?
 - Number of iterations required?
- Let’s postpone these for now, and explore
 - other properties of optimal bases.
 - other variants of the simplex method.

Sensitivity analysis: changes in c

$$(P) \min c^T x \quad \begin{cases} \text{s.t.} & Ax = b \quad (D) \max b^T p \\ x \geq 0 & \text{s.t.} & p^T A \leq c^T \end{cases}$$

- Suppose optimal basis B is known, but c becomes $c + t\Delta c$, for some given $\Delta c \in \mathbb{R}^n$
- For what values of t is B still optimal?
 - $x_B = B^{-1}b \geq 0$ does not change
 - Need: $(c_j + t\Delta c_j) - (c_B + t\Delta c_B)^T B^{-1} A_j \geq 0$ for all $j \in N$
- Let $\Delta \bar{c}_j = \Delta c_j - \Delta c_B^T B^{-1} A_j$
- B stays dual-feasible (and hence optimal) for
 $$\max_{j: \Delta \bar{c}_j > 0} \frac{\bar{c}_j}{\Delta \bar{c}_j} \leq t \leq \min_{j: \Delta \bar{c}_j < 0} \frac{\bar{c}_j}{\Delta \bar{c}_j}$$

- If change in c is such that B is no longer dual-feasible, re-solve with Primal Simplex (starting at current basis B)
Sensitivity analysis: changes in \(b \)

- Suppose optimal basis \(B \) is known, but \(b \) becomes \(b + t\Delta b \), for some given \(\Delta b \in \mathbb{R}^m \)
- For what values of \(t \) is \(B \) still optimal?
 - \(s_N = c_N - c_B^T B^{-1} A_N = \bar{c}_N \geq 0 \) does not change
 - Need: \(B^{-1}(b + t\Delta b) \geq 0 \)
- Let \(\Delta x_B = B^{-1} \Delta b \)
- \(B \) stays primal-feasible (and hence optimal) for

\[
\max_{i: \Delta x_B(i) > 0} -\frac{x_B(i)}{\Delta x_B(i)} \leq t \leq \min_{i: \Delta x_B(i) < 0} -\frac{x_B(i)}{\Delta x_B(i)}
\]

- If change in \(b \) is such that \(B \) is no longer primal-feasible, re-solve?
- Note: current basis \(B \) is dual-feasible, but not primal feasible...

Primal vs. Dual simplex

- “Primal” Simplex:
 - Starts with a primal-feasible basis
 - Goes from a basis to an (adjacent) basis
 - Strives to achieve dual feasibility (hence selection of entering variable)
 - Maintains primal feasibility throughout (hence selection of exiting variable)
- “Dual” Simplex?
 - Starts with a dual-feasible basis
 - Goes from a basis to an (adjacent) basis
 - Strives to achieve primal feasibility
 - Maintains dual feasibility throughout
- Development of Dual Simplex algorithm:
 - Given a dual-feasible basis,
 - Determine which variable should exit to work towards primal feasibility
 - Then determine which variable should enter to maintain dual feasibility
An iteration of the dual simplex method: a pivot

1. Let \((p; s) = (p; s_B; s_N) = ((c_B^T B^{-1})^T; 0; \bar{c}_N)\) with \(s_N \geq 0\) be a dual BFS, and \(B\) — the associated basis.
2. Compute \(x_B = B^{-1}b\). If \(x_B \geq 0\) — terminate; solution found. Else, choose \(l : x_B(l) < 0\). \((x_B(l)\) leaves the basis).
3. Let \(v\) be the \(l\)th row of \(B^{-1}A\):
 \[v^T = e_i^T B^{-1}A\]
 If \(v \geq 0\), terminate; (primal) LP is infeasible.
4. Else, let \(j = \arg\min_{i : v_i < 0} \frac{\bar{c}_i}{-v_i}\) \((x_j\) enters the basis).
5. Let \(l\) and \(j\) be as above. Form a new basis matrix by replacing \(A_B(l)\) with \(A_j\).

Analysis of the dual simplex pivot

Entering variable: \(x_j\); exiting variable: \(x_B(l)\)

- New basic \((p^{\text{new}})^T = p^T + t^*\Delta p = c_B^T B^{-1} + \frac{\bar{c}_j}{v_j} e_i^T B^{-1}\)
- For \(i\) in the (new) basis, \(c_i^{\text{new}} = 0\) by construction.
- For \(i\) nonbasic (after the basis change),
 \[c_i^{\text{new}} = c_i - (p^{\text{new}})^T A_i = \bar{c}_i - \frac{\bar{c}_j}{v_j} e_i^T B^{-1} A_i = \bar{c}_i - \frac{\bar{c}_j}{v_j} \cdot v_i\]
 - For \(i = B(l)\): \(c_B^{\text{new}}(l) = x_B(l) - \frac{\bar{c}_j}{v_j} \cdot v_B(l) = 0 - \frac{\bar{c}_j}{v_j} \cdot 1 \geq 0\)
 - For \(i \neq B(l)\): \(\bar{c}_i^{\text{new}} = \bar{c}_i - \frac{\bar{c}_j}{v_j} \cdot v_i \geq 0\) by choice of \(j\)
- New objective value:
 \[(p^{\text{new}})^T b = c_B^T B^{-1}b + \frac{\bar{c}_j}{v_j} e_i^T B^{-1}b = c_B^T B^{-1}b + \frac{\bar{c}_j}{v_j} x_B(l) \geq c_B^T B^{-1}b\]
 - If \(\bar{c}_j > 0\), then the pivot is non-degenerate and new dual BFS has a better (dual) objective function value
 - If all pivots are non-degenerate, bases are never repeated, proving convergence
 - Usual anti-cycling pivoting rules can be used if needed
Sensitivity analysis summary

Given a primal and dual feasible basis B,

- If c changes to $c + t \Delta c$, find range of t for which B remains dual-feasible
- If b changes to $b + t \Delta b$, find range of t for which B remains primal-feasible
- If both changes happen simultaneously, combined analyses finds range of t for which B remains optimal

Simplex method summary so far

✓ Described:
 - Primal simplex method, to use when a starting primal-feasible B is available
 - Dual simplex method, to use when a starting dual-feasible B is available

✓ Argued that both versions of simplex terminate after a finite number of iterations
 - Either finds an optimal basis,
 - or proves that the problem is unbounded

Easy argument with no degeneracy; references to anti-cycling pivoting rules with degeneracy

✓ Still unanswered:
 - How many iterations?
 - How much time per iteration?
 - How do we get a primal- or dual- feasible basis to start with?
 - or re-design simplex method to be able to start at any basis!