
IOE 511/Math 652: Continuous Optimization Methods, Section 1

Marina A. Epelman

Fall 2007

These notes can be freely reproduced for any non-commercial purpose; please acknowledge the
author if you do so.

In turn, I would like to thank Robert M. Freund, from whose courses 15.084: Nonlinear Program-
ming and 15.094: Systems Optimization: Models and Computation at MIT these notes borrow in
many ways.

i

IOE 511/Math 562, Section 1, Fall 2007 ii

Contents

1 Examples of nonlinear programming problems formulations 1
1.1 Forms and components of a mathematical programming problems 1
1.2 Markowitz portfolio optimization model . 1
1.3 Least squares problem (parameter estimation) . 2
1.4 Maximum likelihood estimation . 2
1.5 Cantilever beam design . 3

2 Calculus and analysis review 5

3 Basic notions in optimization 9
3.1 Types of optimization problems . 9
3.2 Constraints and feasible regions . 9
3.3 Types of optimal solutions . 9
3.4 Existence of solutions of optimization problems . 10

4 Optimality conditions for unconstrained problems 12
4.1 Optimality conditions: the necessary and the sufficient 12
4.2 Convexity and minimization . 15

5 Line search methods: one-dimensional optimization 18
5.1 General optimization algorithm . 18
5.2 Stepsize selection . 19

5.2.1 A bisection algorithm for a line search of a convex function 19
5.2.2 Armijo rule . 21

6 The steepest descent algorithm for unconstrained optimization 22
6.1 The algorithm . 22
6.2 Global convergence . 23

7 Rate of convergence of steepest descent algorithm 25
7.1 Properties of quadratic forms . 25
7.2 The rate of convergence of the steepest descent algorithm for the case of a quadratic

function . 25
7.3 An example . 28
7.4 Proof of Kantorovich Inequality . 30

8 Newton’s method for minimization 32
8.1 Convergence analysis of Newton’s method . 34

8.1.1 Rate of convergence . 34
8.1.2 Rate of convergence of the pure Newton’s method 36

8.2 Further discussion and modifications of the Newton’s method 38
8.2.1 Global convergence for strongly convex functions with a two-phase Newton’s

method . 38
8.2.2 Other modifications of the Newton’s method 39

8.3 Quasi-Newton (secant) methods . 40
8.3.1 The Broyden family . 40
8.3.2 BFGS method . 41

IOE 511/Math 562, Section 1, Fall 2007 iii

8.3.3 A final note . 42

9 Constrained optimization — optimality conditions 43
9.1 Introduction . 43
9.2 Necessary Optimality Conditions: Geometric view 43
9.3 Separation of convex sets . 46
9.4 First order optimality conditions . 48

9.4.1 “Algebraic” necessary conditions . 48
9.4.2 Generalizations of convexity and first order necessary conditions 49
9.4.3 Constraint qualifications, or when are necessary conditions really necessary? . 51

9.5 Second order conditions . 53

10 Linearly constrained problems and quadratic programming 54
10.1 The gradient projection method for linear equality constrained problems 54

10.1.1 Optimization over linear equality constraints 54
10.1.2 Analysis of (DFP) . 55
10.1.3 Solving (DFPx) . 55
10.1.4 The Variable Metric Method . 56

10.2 Linear inequality constraints: manifold suboptimization methods 57
10.3 Quadratic Programming . 59

11 Introduction to penalty methods for constrained optimization 60
11.1 Karush-Kuhn-Tucker multipliers in penalty methods 62
11.2 Exact penalty methods . 64
11.3 Augmented Lagrangian penalty function . 66

12 Successive quadratic programming (SQP) 68
12.1 The basic SQP method . 68
12.2 Local convergence . 70

12.2.1 The Newton SQP method . 70
12.2.2 Quasi-Newton approximations . 71

12.3 Global convergence . 71
12.3.1 l1 (linear) penalty merit function . 72
12.3.2 Augmented Lagrangian merit function . 73

12.4 Some final issues . 73

13 Barrier Methods 75
13.1 Karush-Kuhn-Tucker multipliers in barrier methods 77

14 Duality theory of nonlinear programming 79
14.1 The practical importance of duality . 79
14.2 Definition of the dual problem . 79

14.2.1 Problems with different formats of constraints 80
14.3 Examples . 81

14.3.1 The dual of a linear program . 81
14.3.2 The dual of a binary integer program . 81
14.3.3 The dual of a quadratic problem . 81
14.3.4 Dual of a log-barrier problem . 82

14.4 Geometry of the dual . 82

IOE 511/Math 562, Section 1, Fall 2007 iv

14.5 Properties of the dual and weak duality . 82
14.6 Saddlepoint optimality criteria . 83
14.7 Strong duality for convex optimization problems . 84
14.8 Perturbation and sensitivity analysis . 85
14.9 Duality strategies . 86

14.9.1 Dualizing “bad” constraints . 86
14.9.2 Dualizing a large problem into many small problems 86

14.10A slight detour: subgradient optimization . 88
14.10.1 Review: separating hyperplane theorems . 88
14.10.2 Subgradients of convex functions . 88
14.10.3 Subgradient method for minimizing a convex function 90
14.10.4 Subgradient method with projections . 91

14.11Solution of the Lagrangian dual via subgradient optimization 93

15 Primal-dual interior point methods for linear programming 95
15.1 The problem . 95
15.2 The primal-dual algorithm . 97
15.3 The primal-dual Newton step . 98
15.4 Complexity analysis of the algorithm . 101
15.5 An implementable primal-dual interior-point algorithm 103

15.5.1 Decreasing the Path Parameter θ . 105
15.5.2 The Stopping Criterion . 105
15.5.3 The Full Interior-Point Algorithm . 105
15.5.4 Remarks on interior-point methods . 106

16 Introduction to Semidefinite Programming (SDP) 107
16.1 Introduction . 107
16.2 A slightly different view of linear programming . 107
16.3 Facts about matrices and the semidefinite cone . 108

16.3.1 Facts about the semidefinite cone . 108
16.3.2 Facts about eigenvalues and eigenvectors . 108
16.3.3 Facts about symmetric matrices . 109

16.4 Semidefinite programming . 110
16.5 Semidefinite programming duality . 111
16.6 Key properties of linear programming that do not extend to SDP 113
16.7 SDP in combinatorial optimization . 113

16.7.1 An SDP relaxation of the MAX CUT problem 113
16.8 SDP in convex optimization . 115

16.8.1 SDP for convex quadratically constrained quadratic programming 115
16.8.2 SDP for second-order cone optimization . 116
16.8.3 SDP for eigenvalue optimization . 116
16.8.4 The logarithmic barrier function . 118
16.8.5 The analytic center problem for SDP . 118
16.8.6 SDP for the minimum volume circumscription problem 119

16.9 SDP in control theory . 121
16.10Interior-point methods for SDP . 121
16.11Website for SDP . 122

IOE 511/Math 562, Section 1, Fall 2007 1

1 Examples of nonlinear programming problems formulations

1.1 Forms and components of a mathematical programming problems

A mathematical programming problem or, simply, a mathematical program is a mathematical for-
mulation of an optimization problem.

Unconstrained Problem:

(P) minx f(x)
s.t. x ∈ X,

where x = (x1, . . . , xn)T ∈ Rn, f(x) : Rn → R, and X is an open set (usually X = Rn).1

Constrained Problem:

(P) minx f(x)
s.t. gi(x) ≤ 0 i = 1, . . . ,m

hi(x) = 0 i = 1, . . . , l
x ∈ X,

where g1(x), . . . , gm(x), h1(x), . . . , hl(x) : Rn → R.

Let g(x) = (g1(x), . . . , gm(x))T : Rn → Rm, h(x) = (h1(x), . . . , hl(x))T : Rn → Rl. Then (P) can
be written as

(P) minx f(x)
s.t. g(x) ≤ 0

h(x) = 0
x ∈ X.

(1)

Some terminology: Function f(x) is the objective function. Restrictions “hi(x) = 0” are referred
to as equality constraints, while “gi(x) ≤ 0” are inequality constraints. Notice that we do not use
constraints in the form “gi(x) < 0”!

A point x is feasible for (P) if it satisfies all the constraints. (For an unconstrained problem, x ∈ X.)
The set of all feasible points forms the feasible region, or feasible set (let us denote it by S). The
goal of an optimization problem in minimization form, as above, is to find a feasible point x̄ such
that f(x̄) ≤ f(x) for any other feasible point x.

1.2 Markowitz portfolio optimization model

Suppose one has the opportunity to invest in n assets. Their future returns are represented by
random variables, R1, . . . , Rn, whose expected values and covariances, E[Ri], i = 1, . . . , n and
Cov(Ri, Rj), i, j = 1, . . . , n, respectively, can be estimated based on historical data and, possibly,
other considerations. At least one of these assets is a risk-free asset.

Suppose xi, i = 1, . . . , n, are the fractions of your wealth allocated to each of the assets (that is,
x ≥ 0 and

∑n
i=1 xi = 1). The return of the resulting portfolio is a random variable

∑n
i=1 xiRi

1BSS uses (·)T notation for transpose.

IOE 511/Math 562, Section 1, Fall 2007 2

with mean
∑n

i=1 xiE[Ri] and variance
∑n

i=1

∑n
j=1 xixjCov(Ri, Rj). A portfolio is usually chosen

to optimize some measure of a tradeoff between the expected return and the risk, such as

max
∑n

i=1 xiE[Ri]− µ
∑n

i=1

∑n
j=1 xixjCov(Ri, Rj)

s.t.
∑n

i=1 xi = 1
x ≥ 0,

where µ > 0 is a (fixed) parameter reflecting the investor’s preferences in the above tradeoff. Since
it is hard to assess anybody’s value of µ, the above problem can (and should) be solved for a variety
of values of µ, thus generating a variety of portfolios on the efficient frontier.

1.3 Least squares problem (parameter estimation)

Applications in model constructions, statistics (e.g., linear regression), neural networks, etc.

We consider a linear measurement model, i.e., we stipulate that an (output) quantity of interest
y ∈ R can be expressed as a linear function y ≈ aTx of input a ∈ Rn and model parameters x ∈ Rn.
Our goal is to find the vector of parameters x which provide the “best fit” for the available set of
input-output pairs (ai, yi), i = 1, . . . ,m. If “fit” is measured by sum of squared errors between
estimated and measured outputs, solution to the following optimization problem

min
∑m

i=1(vi)
2 = minx∈Rn

∑m
i=1(yi − aTi x)2 = minx∈Rn ‖Ax− y‖22,

x ∈ Rn
s.t. vi = yi − aTi x, i = 1, . . . ,m

provides the best fit. Here, A is the matrix with rows aTi .

1.4 Maximum likelihood estimation

Consider a family of probability distributions px(·) on R, parameterized by vector x ∈ Rn. When
considered as a function of x for a particular observation of a random variable y ∈ R, the function
px(y) is called the likelihood function. It is more convenient to work with its logarithm, which is
called the log-likelihood function:

l(x) = log px(y).

Consider the problem of estimating the value of the parameter vector x based on observing one
sample y from the distribution. One possible method, maximum likelihood (ML) estimation, is to
estimate x as

x̂ = argmaxx px(y) = argmaxx l(x),

i.e., to choose as the estimate the value of the parameter that maximizes the likelihood (or the
log-likelihood) function for the observed value of y.

If there is prior information available about x, we can add constraint x ∈ C ⊆ Rn explicitly, or
impose it implicitly, by redefining px(y) = 0 for x 6∈ C (note that in that case l(x) = −∞ for
x 6∈ C).

For m iid samples (y1, . . . , ym), the log-likelihood function is

l(x) = log(
m∏
i=1

px(yi)) =
m∑
i=1

log px(yi).

IOE 511/Math 562, Section 1, Fall 2007 3

The ML estimation is thus an optimization problem:

max l(x) subject to x ∈ C.

For example, returning to the linear measurement model y = aTx+ v, let us now assume that the
error v is iid random noise with density p(v). If there are m measurement/output pairs (ai, yi)
available, then the likelihood function is

px(y) =
m∏
i=1

p(yi − aTi x),

and the log-likelihood function is

l(x) =
m∑
i=1

log p(yi − aTi x).

For example, suppose the noise is Gaussian (or Normal) with mean 0 and standard deviation σ.

Then p(z) = 1√
2πσ2

e−
z2

2σ2 and the log-likelihood function is

l(x) = −1

2
log(2πσ)− 1

2σ2
‖Ax− y‖22.

Therefore, the ML estimate of x is arg minx ‖Ax − y‖22, the solution of the least squares approxi-
mation problem.

1.5 Cantilever beam design

Consider the design of a cantilever beam of length l and density ρ whose height x1 ≥ 0.1 inch and
width x2 ≥ 0.1 inch are to be selected to minimize total volume, which is proportional to lx1x2.
The displacement of the beam under load P should not exceed a pre-specified amount δ. The
displacement is given by 4Pl3

Y x1x32
, where Y > 0 is the Young’s modulus of the material. Therefore,

the design problem can be formulated as follows:

minx1, x2 lx1x2

s.t. δY
4l3
x1x

3
2 − P ≥ 0

x1 ≥ 0.1, x2 ≥ 0.1.

(2)

In practice, however, Y (property of the material) and P (load on the beam) are not known a
priori, or exactly. One common way to account for this uncertainty in the model is to view these
parameters as random variables. Then the displacement of the beam is also a random variable, and
the constraint “displacement of the beam does not exceed δ” is replaced with “with high probability,
displacement of the beam does not exceed δ. This leads to the following optimization problem,
which is commonly referred to as the chance-constrained problem:

min lx1x2

s.t. Pr .
(
δY
4l3
x1x

3
2 − P ≥ 0

)
≥ α

x1 ≥ 0.1, x2 ≥ 0.1,

(3)

IOE 511/Math 562, Section 1, Fall 2007 4

where α ∈ [0, 1] is a parameter selected by the designer to indicate the desired reliability. (Higher
values of α correspond to greater probability that the condition on displacement will be met.)

Reddy, Grandhi and Hopkins2 analyze this problem with

• l = 30 inches

• δ = 0.15 inches

• Y and P are independent random variables

• Y is Gaussian with mean µY = 3× 107 psi and standard deviation σY = 3× 106 psi

• P is Gaussian with mean µP = 400 lbs and standard deviation σP = 120 lbs

Let us define random variable R(x) = δY
4l3
x1x

3
2 − P . Then R(x) is Gaussian with mean and vari-

ance

µ(x) =
δµY
4l3

x1x
3
2 − µP , σ(x)2 =

δ2σ2
Y

16l6
x2

1x
6
2 + σ2

P .

Substituting parameter values into these expressions, we obtain:

µ(x) =
25

3
(5x1x

3
2 − 48), σ(x) =

5

6

√
25x2

1x
6
2 + (144)2.

We also define

ρ(x) =
µ(x)

σ(x)
= 10

5x1x
3
2 − 48√

25x2
1x

6
2 + (144)2

. (4)

The chance constraint of the above formulation can be re-written as

Pr .{R(x) ≥ 0} ≥ α ⇔ Φ(ρ(x)) ≥ α ⇔ ρ(x) ≥ Φ−1(α).

Here, Φ(·) is the CDF of a standard Gaussian random variable, and the second equivalence follows
by its monotonicity. Let β := Φ−1(α). Since we are interested in large values of α, β is going
to assume positive values. Therefore, by squaring the expression of ρ(x) given in the previous
paragraph, we can re-state the chance constraint as the following two inequalities:

µ(x) ≥ 0, µ(x)2 − β2σ(x)2 ≥ 0.

Substituting expressions for µ(x) and σ(x), and letting γ = β2/100, these become:

5x1x
3
2 − 48 ≥ 0, 25(1− γ)x2

1x
6
2 − 480x1x

3
2 +

(
482 − 1442γ

)
≥ 0.

Thus, the chance-constrained optimization model of the cantilever beam design problem can be
re-stated as the following nonlinear optimization problem:

min lx1x2

s.t. 5x1x
3
2 − 48 ≥ 0

25(1− γ)x2
1x

6
2 − 480x1x

3
2 +

(
482 − 1442γ

)
≥ 0

x1 ≥ 0.1, x2 ≥ 0.1.

(5)

2Mahidhar V. Reddy, Ramana V. Grandhi, and Dale A. Hopkins. Reliability based structural optimization – A
simplified safety index approach. Comput. Struct., 53(6):1407-1418, 1994.

IOE 511/Math 562, Section 1, Fall 2007 5

2 Calculus and analysis review

Almost all books on nonlinear programming have an appendix reviewing the relevant notions.

Most of these should be familiar to you from a course in analysis. Most of material in this course
is based in some form on these concepts, therefore, to succeed in this course you should be not just
familiar, but comfortable working with these concepts.

Vectors and Norms

• Rn: set of n-dimensional real vectors (x1, . . . , xn)T (“xT ” — transpose)

• Definition: norm ‖ · ‖ on Rn: a mapping of Rn onto R such that:

1. ‖x‖ ≥ 0 ∀x ∈ Rn; ‖x‖ = 0⇔ x = 0.

2. ‖cx‖ = |c| · ‖x‖ ∀c ∈ R, x ∈ Rn.

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖ ∀x, y ∈ Rn.

• Euclidean norm: ‖ · ‖2: ‖x‖2 =
√
xTx =

(∑n
i=1 x

2
i

)1/2
.

• Schwartz inequality: |xT y| ≤ ‖x‖2 · ‖y‖2 with equality ⇔ x = αy.

• All norms in Rn are equivalent, i.e., for any ‖ · ‖1 and ‖ · ‖2 ∃α1, α2 > 0 s.t. α1‖x‖1 ≤ ‖x‖2 ≤
α2‖x‖1 ∀x ∈ Rn.

• ε–Neighborhood : Nε(x) = B(x, ε) = {y : ‖y − x‖ ≤ ε} (sometimes — strict inequality).

Sequences and Limits.

Sequences in R

• Notation: a sequence: {xk : k = 1, 2, . . .} ⊂ R, {xk} for short.

• Definition: {xk} ⊂ R converges to x ∈ R (xk → x, limk→∞ xk = x) if

∀ε > 0 ∃K : |xk − x| ≤ ε (equiv. xk ∈ B(x, ε)) ∀k ≥ K.

xk →∞ (−∞) if
∀A ∃K : xk ≥ A (xk ≤ A) ∀k ≥ K.

• Definition: {xk} is bounded above (below): ∃A : xk ≤ A (xk ≥ A) ∀k.

• Definition: {xk} is bounded : {|xk|} is bounded; equiv.,{xk} bounded above and below.

• Definition: {xk} is a Cauchy sequence: ∀ε > 0 ∃K : |xk − xm| < ε ∀k,m ≥ K

• Definition: {xk} is nonincreasing (nondecreasing): xk+1 ≤ xk (xk+1 ≥ xk) ∀k;
monotone: nondecreasing or nonincreasing.

• Proposition: Every monotone sequence in R has a limit (possibly infinite). If it is also
bounded, the limit is finite.

Sequences in Rn

• Definition: {xk} ⊂ Rn converges to x ∈ Rn (is bounded, is Cauchy) if {xik} (the sequence of
ith coordinates of xk’s) converges to the xi (is bounded, is Cauchy) ∀i.

IOE 511/Math 562, Section 1, Fall 2007 6

• Propositions:

– xk → x⇔ ‖xk − x‖ → 0

– {xk} is Cauchy⇔ ∀ε > 0 ∃K : ‖xk − xm‖ < ε ∀k,m ≥ K

– {xk} is bounded⇔ {‖xk‖} is bounded

• Note: ‖xn‖ → ‖x‖ does not imply that xn → x!! (Unless x = 0).

Limit Points

• Definition: x is a limit point of {xk} if there exists an infinite subsequence of {xk} that
converges to x.

• Definition: x is a limit point of A ⊆ Rn if there exists an infinite sequence {xk} ⊂ A that
converges to x.

• To see the difference between limits and limit points, consider the sequence

{(1, 0), (0, 1), (−1, 0), (0,−1), (1, 0), (0, 1), (−1, 0), (0,−1), . . .}

• Proposition: let {xk} ⊂ Rn

– {xk} converges ⇔ it’s a Cauchy sequence

– If {xk} is bounded, {xk} converges ⇔ it has a unique limit point

– If {xk} is bounded, it has at least one limit point

Infimum and Supremum

• Let A ⊂ R.
Supremum of A (supA): smallest y : x ≤ y ∀x ∈ A.
Infimum of A (inf A): largest y : x ≥ y ∀x ∈ A.

• Not the same as max and min! Consider, for example, (0, 1).

Closed and Open Sets

• Definition: a set A ⊆ Rn is closed if it contains all its limit points. In other words, for any
sequence {xk} ⊂ A that has a limit x, x ∈ A.

• Definition: a set A ⊆ Rn is open if its complement, Rn\A, is closed

• Definition: a point x ∈ A is interior if there is a neighborhood of x contained in A

• Proposition

1. Union of finitely many closed sets is closed.

2. Intersection of closed sets is closed.

3. Union of open sets is open.

4. Intersection of finitely many open sets is open.

5. A set is open ⇔ All of its elements are interior points.

6. Every subspace of Rn is closed.

IOE 511/Math 562, Section 1, Fall 2007 7

• Examples: neighborhoods of x:
{y : ‖y − x‖ ≤ ε} — closed
{y : ‖y − x‖ < ε} — open

• Some sets are neither: (0, 1].

Functions and Continuity

• A ⊆ Rm, f : A→ R – a function.

• Definition: f is continuous at x̄ if

∀ε > 0 ∃δ > 0 : x ∈ A, ‖x− x̄‖ < δ ⇒ |f(x)− f(x̄)| < ε.

• Proposition: f is continuous at x̄ ⇔ for any {xn} ⊂ A : xn → x̄ we have f(xn)→ f(x̄). (In
other words, lim f(xn) = f(limxn).)

• Proposition:

– Sums, products and inverses of continuous functions are continuous (in the last case,
provided the function is never zero).

– Composition of two continuous functions is continuous.

– Any vector norm is a continuous function.

Differentiation

Real-valued functions: Let f : X → R, where X ⊂ Rn is open.

• Definition: f is differentiable at x̄ ∈ X if there exists a vector ∇f(x̄) (the gradient of f at x̄)
and a function α(x̄, y) : X → R satisfying limy→0 α(x̄, y) = 0, such that for each x ∈ X

f(x) = f(x̄) +∇f(x̄)T (x− x̄) + ‖x− x̄‖α(x̄, x− x̄).

f is differentiable on X if f is differentiable ∀x̄ ∈ X. The gradient vector is a vector of partial
derivatives:

∇f(x̄) =

(
∂f(x̄)

∂x1
, . . . ,

∂f(x̄)

∂xn

)T
.

The directional derivative of f at x̄ in the direction d is

lim
λ→0

f(x̄+ λd)− f(x̄)

λ
= ∇f(x̄)Td

• Definition: the function f is twice differentiable at x̄ ∈ X if there exists a vector ∇f(x̄) and
an n× n symmetric matrix H(x̄) (the Hessian of f at x̄) such that for each x ∈ X

f(x) = f(x̄) +∇f(x̄)T (x− x̄) +
1

2
(x− x̄)TH(x̄)(x− x̄) + ‖x− x̄‖2α(x̄, x− x̄),

and limy→0 α(x̄, y) = 0. f is twice differentiable on X if f is twice differentiable ∀x̄ ∈ X. The
Hessian, which we often denote by H(x) for short, is a matrix of second partial derivatives:

[H(x)]ij =
∂2f(x̄)

∂xi∂xj
,

IOE 511/Math 562, Section 1, Fall 2007 8

and for functions with continuous second derivatives, it will always be symmetric:

∂2f(x̄)

∂xi∂xj
=
∂2f(x̄)

∂xj∂xi

• Example:
f(x) = 3x2

1x
3
2 + x2

2x
3
3

∇f(x) =

 6x1x
3
2

9x2
1x

2
2 + 2x2x

3
3

3x2
2x

2
3

H(x) =

 6x3
2 18x1x

2
2 0

18x1x
2
2 18x2

1x2 + 2x3
3 6x2x

2
3

0 6x2x
2
3 6x2

2x3

• See additional handout to verify your understanding and derive the gradient and Hessian of

linear and quadratic functions.

Vector-valued functions: Let f : X → Rm, where X ⊂ Rn is open.

•

f(x) = f(x1, . . . , xn) =

f1(x1, . . . , xn)
f2(x1, . . . , xn)

...
fm(x1, . . . , xn)

 ,

where each of the functions fi is a real-valued function.

• Definition: the Jacobian of f at point x̄ is the matrix whose jth row is the gradient of fj at
x̄, transposed. More specifically, the Jacobian of f at x̄ is defined as ∇f(x̄)T , where ∇f(x̄)
is the matrix with entries:

[∇f(x̄)]ij =
∂fj(x̄)

∂xi
.

Notice that the jth column of ∇f(x̄) is the gradient of fj at x̄ (what happens when m = 1?)

• Example:

f(x) =

 sinx1 + cosx2

e3x1+x22

4x3
1 + 7x1x

2
2

 .

Then

∇f(x)T =

 cosx1 − sinx2

3e3x1+x22 2x2e
3x1+x22

12x2
1 + 7x2

2 14x1x2

 .

Other well-known results from calculus and analysis will be introduced throughout the course as
needed.

IOE 511/Math 562, Section 1, Fall 2007 9

3 Basic notions in optimization

3.1 Types of optimization problems

Unconstrained Optimization Problem:

(P) minx f(x)
s.t. x ∈ X,

where x = (x1, . . . , xn)T ∈ Rn, f(x) : Rn → R, and X is an open set (usually X = Rn).

Constrained Optimization Problem:

(P) minx f(x)
s.t. gi(x) ≤ 0 i = 1, . . . ,m

hi(x) = 0 i = 1, . . . , l
x ∈ X,

where g1(x), . . . , gm(x), h1(x), . . . , hl(x) : Rn → R.

Let g(x) = (g1(x), . . . , gm(x))T : Rn → Rm, h(x) = (h1(x), . . . , hl(x))T : Rn → Rl. Then (P) can
be written as

(P) minx f(x)
s.t. g(x) ≤ 0

h(x) = 0
x ∈ X.

(6)

3.2 Constraints and feasible regions

A point x is feasible for (P) if it satisfies all the constraints. (For an unconstrained problem, x ∈ X.)
The set of all feasible points forms the feasible region, or feasible set (let us denote it by S).

At a feasible point x̄ an inequality constraint gi(x) ≤ 0 is said to be binding, or active if gi(x̄) = 0,
and nonbinding, or nonactive if gi(x̄) < 0 (all equality constraints are considered to be active at
any feasible point).

3.3 Types of optimal solutions

Consider a general optimization problem

(P) min
x∈S

or max
x∈S

f(x).

Recall: an ε-neighborhood of x̄, or a ball centered at x̄ with radius ε is the set:

B(x̄, ε) = Nε(x̄) := {x : ‖x− x̄‖ ≤ ε}.

IOE 511/Math 562, Section 1, Fall 2007 10

We have the following definitions of local/global, strict/non-strict minimizers/maximizers.3

Definition 1 (cf. BSS 3.4.1) In the optimization problem (P),

• x ∈ S is a global minimizer of (P) if f(x) ≤ f(y) for all y ∈ S.

• x ∈ S is a strict global minimizer of (P) if f(x) < f(y) for all y ∈ S, y 6= x.

• x ∈ S is a local minimizer of (P) if there exists ε > 0 such that f(x) ≤ f(y) for all y ∈
B(x, ε) ∩ S.

• x ∈ S is a strict local minimizer of (P) if there exists ε > 0 such that f(x) < f(y) for all
y ∈ B(x, ε) ∩ F , y 6= x.

• x ∈ S is a strict global maximizer of (P) if f(x) > f(y) for all y ∈ S, y 6= x.

• x ∈ S is a global maximizer of (P) if f(x) ≥ f(y) for all y ∈ S.

• x ∈ S is a local maximizer of (P) if there exists ε > 0 such that f(x) ≥ f(y) for all
y ∈ B(x, ε) ∩ F .

• x ∈ S is a strict local maximizer of (P) if there exists ε > 0 such that f(x) > f(y) for all
y ∈ B(x, ε) ∩ S, y 6= x.

3.4 Existence of solutions of optimization problems

Most of the topics of this course are concerned with

• existence of optimal solutions,

• characterization of optimal solutions, and

• algorithms for computing optimal solutions.

To illustrate the questions arising in the first topic, consider the following optimization prob-
lems:

•
(P) minx

1 + x

2x
s.t. x ≥ 1 .

Here there is no optimal solution because the feasible region is unbounded

•
(P) minx

1

x
s.t. 1 ≤ x < 2 .

Here there is no optimal solution because the feasible region is not closed.

•
(P) minx f(x)

s.t. 1 ≤ x ≤ 2 ,

3I will try to reserve the terms “minimum,” “maximum,” and “optimum” for the objective function values at the
appropriate points x ∈ S, as opposed to the points themselves. Many books, however, do not make such distinctions,
referring as, say, a “minimum” to both the point at which the function is minimized, and the function value at that
point. Which one is being talked about is usually clear from the context, and I might inadvertently slip on occasion.

IOE 511/Math 562, Section 1, Fall 2007 11

where

f(x) =

{
1/x, x < 2

1, x = 2

Here there is no optimal solution because the function f(·) is not continuous.

Theorem 2 (Weierstrass’ Theorem for sequences) Let {xk}, k →∞ be an infinite sequence
of points in the compact (i.e., closed and bounded) set S. Then some infinite subsequence of points
xkj converges to a point contained in S.

Theorem 3 (Weierstrass’ Theorem for functions, BSS 2.3.1) Let f(x) be a continuous real-
valued function on the compact nonempty set S ⊂ Rn. Then S contains a point that minimizes
(maximizes) f on the set S.

IOE 511/Math 562, Section 1, Fall 2007 12

4 Optimality conditions for unconstrained problems

The definitions of global and local solutions of optimization problems are intuitive, but usually
impossible to check directly. Hence, we will derive easily verifiable conditions that are either
necessary for a point to be a local minimizer (thus helping us to identify candidates for minimizers),
or sufficient (thus allowing us to confirm that the point being considered is a local minimizer), or,
sometimes, both.

(P) min f(x)
s.t. x ∈ X,

where x = (x1, . . . , xn)T ∈ Rn, f : Rn → R, and X — an open set (usually, X = Rn).

4.1 Optimality conditions: the necessary and the sufficient

Necessary condition for local optimality: “if x̄ is a local minimizer of (P), then x̄ must satisfy...”
Such conditions help us identify all candidates for local optimizers.

Theorem 4 (BSS 4.1.2) Suppose that f is differentiable at x̄. If there is a vector d such that
∇f(x̄)Td < 0, then for all λ > 0 sufficiently small, f(x̄+λd) < f(x̄) (d is called a descent direction
if it satisfies the latter condition).4

Proof: We have:
f(x̄+ λd) = f(x̄) + λ∇f(x̄)Td+ λ‖d‖α(x̄, λd),

where α(x̄, λd)→ 0 as λ→ 0. Rearranging,

f(x̄+ λd)− f(x̄)

λ
= ∇f(x̄)Td+ ‖d‖α(x̄, λd).

Since ∇f(x̄)Td < 0 and α(x̄, λd) → 0 as λ → 0, f(x̄ + λd) − f(x̄) < 0 for all λ > 0 sufficiently
small.

Corollary 5 Suppose f is differentiable at x̄. If x̄ is a local minimizer, then ∇f(x̄) = 0 (such a
point is called a stationary point).

Proof: If ∇f(x̄) 6= 0, then d = −∇f(x̄) is a descent direction, whereby x̄ cannot be a local
minimizer.

The above corollary is a first order necessary optimality condition for an unconstrained minimization
problem. However, a stationary point can be a local minimizer, a local maximizer, or neither. The
following theorem will provide a second order necessary optimality condition. First, a definition:

Definition 6 An n × n matrix M is called symmetric if Mij = Mji ∀i, j. A symmetric n × n
matrix M is called

• positive definite if xTMx > 0 ∀x ∈ Rn, x 6= 0

• positive semidefinite if xTMx ≥ 0 ∀x ∈ Rn

• negative definite if xTMx < 0 ∀x ∈ Rn, x 6= 0

4The book is trying to be more precise about the “sufficiently small” statement, but I believe makes a typo.

IOE 511/Math 562, Section 1, Fall 2007 13

• negative semidefinite if xTMx ≤ 0 ∀x ∈ Rn

• indefinite if ∃x, y ∈ Rn : xTMx > 0, yTMy < 0.

We say that M is SPD if M is symmetric and positive definite. Similarly, we say that M is SPSD
if M is symmetric and positive semi-definite.

Example 1

M =

(
2 0
0 3

)
is positive definite.

Example 2

M =

(
8 −1
−1 1

)
is positive definite. To see this, note that for x 6= 0,

xTMx = 8x2
1 − 2x1x2 + x2

2 = 7x2
1 + (x1 − x2)2 > 0 .

Since M is a symmetric matrix, all it eigenvalues are real numbers. It can be shown that M is
positive semidefinite if and only if all of its eigenvalues are nonnegative, positive definite if all of
its eigenvalues are positive, etc.

Theorem 7 (BSS 4.1.3) Suppose that f is twice continuously differentiable at x̄ ∈ X. If x̄ is a
local minimizer, then ∇f(x̄) = 0 and H(x̄) (the Hessian at x̄) is positive semidefinite.

Proof: From the first order necessary condition, ∇f(x̄) = 0. Suppose H(x̄) is not positive
semidefinite. Then ∃d such that dTH(x̄)d < 0. We have:

f(x̄+ λd) = f(x̄) + λ∇f(x̄)Td+
1

2
λ2dTH(x̄)d+ λ2‖d‖2α(x̄, λd)

= f(x̄) +
1

2
λ2dTH(x̄)d+ λ2‖d‖2α(x̄, λd),

where α(x̄, λd)→ 0 as λ→ 0. Rearranging,

f(x̄+ λd)− f(x̄)

λ2
=

1

2
dTH(x̄)d+ ‖d‖2α(x̄, λd).

Since dTH(x̄)d < 0 and α(x̄, λd)→ 0 as λ→ 0, f(x̄+λd)− f(x̄) < 0 for all λ > 0 sufficiently small
— contradiction.

Example 3 Let

f(x) =
1

2
x2

1 + x1x2 + 2x2
2 − 4x1 − 4x2 − x3

2 .

Then
∇f(x) =

(
x1 + x2 − 4, x1 + 4x2 − 4− 3x2

2

)T
,

and

H(x) =

(
1 1
1 4− 6x2

)
.

IOE 511/Math 562, Section 1, Fall 2007 14

∇f(x) = 0 has exactly two solutions: x̄ = (4, 0) and x̃ = (3, 1). But

H(x̃) =

(
1 1
1 −2

)
is indefinite, therefore, the only possible candidate for a local minimum is x̄ = (4, 0).

Necessary conditions only allow us to come up with a list of candidate points for minimizers.
Sufficient condition for local optimality: “if x̄ satisfies ..., then x̄ is a local minimizer of (P).”

Theorem 8 (BSS 4.1.4) Suppose that f is twice differentiable at x̄. If ∇f(x̄) = 0 and H(x̄) is
positive definite, then x̄ is a (strict) local minimizer.

Proof:

f(x) = f(x̄) +
1

2
(x− x̄)TH(x̄)(x− x̄) + ‖x− x̄‖2α(x̄, x− x̄).

Suppose that x̄ is not a strict local minimizer. Then there exists a sequence xk → x̄ such that
xk 6= x̄ and f(xk) ≤ f(x̄) for all k. Define dk = xk−x̄

‖xk−x̄‖ . Then

f(xk) = f(x̄) + ‖xk − x̄‖2
(

1

2
dTkH(x̄)dk + α(x̄, xk − x̄)

)
, so

1

2
dTkH(x̄)dk + α(x̄, xk − x̄) =

f(xk)− f(x̄)

‖xk − x̄‖2
≤ 0.

Since ‖dk‖ = 1 for any k, there exists a subsequence of {dk} converging to some point d such that
‖d‖ = 1 (by Theorem 2). Assume wolog that dk → d. Then

0 ≥ lim
k→∞

1

2
dTkH(x̄)dk + α(x̄, xk − x̄) =

1

2
dTH(x̄)d,

which is a contradiction with positive definiteness of H(x̄).

Note:

• If ∇f(x̄) = 0 and H(x̄) is negative definite, then x̄ is a local maximizer.

• If ∇f(x̄) = 0 and H(x̄) is positive semidefinite, we cannot be sure if x̄ is a local minimizer.

Example 4 Consider the function

f(x) =
1

3
x3

1 +
1

2
x2

1 + 2x1x2 +
1

2
x2

2 − x2 + 9.

Stationary points are candidates for optimality; to find them we solve

∇f(x) =

(
x2

1 + x1 + 2x2

2x1 + x2 − 1

)
= 0.

Solving the above system of equations results in two stationary points: xa = (1,−1)T and xb =
(2,−3). The Hessian is

H(x) =

(
2x1 + 1 2

2 1

)
.

In particular,

H(xa) =

(
3 2
2 1

)
, and H(xb) =

(
5 2
2 1

)
.

Here, H(xa) is indefinite, hence xa is neither a local minimizer or maximizer. H(xb) is positive
definite, hence xb is a local minimizer. Therefore, the function has only one local minimizer —
does this mean that it is also a global minimizer?

IOE 511/Math 562, Section 1, Fall 2007 15

4.2 Convexity and minimization

Definitions:

• Let x, y ∈ Rn. Points of the form λx+(1−λ)y for λ ∈ [0, 1] are called convex combinations of
x and y. More generally, point y is a convex combination of points x1, . . . , xk if y =

∑k
i=1 αixi

where αi ≥ 0 ∀i, and
∑k

i=1 αi = 1.

• A set S ⊂ Rn is called convex if ∀x, y ∈ S and ∀λ ∈ [0, 1], λx+ (1− λ)y ∈ S.

• A function f : S → R, where S is a nonempty convex set is a convex function if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) ∀x, y ∈ S, ∀λ ∈ [0, 1].

• A function f as above is called a strictly convex function if the inequality above is strict for
all x 6= y and λ ∈ (0, 1).

• A function f : S → R is called concave (strictly concave) if (−f) is convex (strictly convex).

Consider the problem:
(CP) minx f(x)

s.t. x ∈ S .

Theorem 9 (BSS 3.4.2) Suppose S is a nonempty convex set, f : S → R is a convex function,
and x̄ is a local minimizer of (CP). Then x̄ is a global minimizer of f over S.

Proof: Suppose x̄ is not a global minimizer, i.e., ∃y ∈ S : f(y) < f(x̄). Let y(λ) = λx̄+ (1− λ)y,
which is a convex combination of x̄ and y for λ ∈ [0, 1] (and therefore, y(λ) ∈ S for λ ∈ [0, 1]).
Note that y(λ)→ x̄ as λ→ 1.

From the convexity of f ,

f(y(λ)) = f(λx̄+ (1− λ)y) ≤ λf(x̄) + (1− λ)f(y) < λf(x̄) + (1− λ)f(x̄) = f(x̄)

for all λ ∈ (0, 1). Therefore, f(y(λ)) < f(x̄) for all λ ∈ (0, 1), and so x̄ is not a local minimizer,
resulting in a contradiction.

Note:

• A problem of minimizing a convex function over a convex feasible region (such as we considered
in the theorem) is a convex programming problem.

• If f is strictly convex, a local minimizer is the unique global minimizer.

• If f is (strictly) concave, a local maximizer is a (unique) global maximizer.

The following results help us to determine when a function is convex.

Theorem 10 (BSS 3.3.3) Suppose X ⊆ Rn is a non-empty open convex set, and f : X → R is
differentiable. Then f is convex iff (“if and only if”) it satisfies the gradient inequality:

f(y) ≥ f(x) +∇f(x)T (y − x) ∀x, y ∈ X.

Proof: Suppose f is convex. Then, for any λ ∈ (0, 1],

f(λy + (1− λ)x) ≤ λf(y) + (1− λ)f(x)⇒ f(x+ λ(y − x))− f(x)

λ
≤ f(y)− f(x).

IOE 511/Math 562, Section 1, Fall 2007 16

Letting λ→ 0, we obtain: ∇f(x)T (y − x) ≤ f(y)− f(x), establishing the “only if” part.

Now, suppose that the gradient inequality holds ∀x, y ∈ X. Let w and z be any two points in X.
Let λ ∈ [0, 1], and set x = λw + (1− λ)z. Then

f(w) ≥ f(x) +∇f(x)T (w − x) and f(z) ≥ f(x) +∇f(x)T (z − x).

Taking a convex combination of the above inequalities,

λf(w) + (1− λ)f(z) ≥ f(x) +∇f(x)T (λ(w − x) + (1− λ)(z − x))

= f(x) +∇f(x)T 0 = f(λw + (1− λ)z),

so that f(x) is convex.

In one dimension, the gradient inequality has the form f(y) ≥ f(x) + f ′(x)(y−x) ∀x, y ∈ X.

The following theorem provides another necessary and sufficient condition, for the case when f is
twice continuously differentiable.

Theorem 11 (BSS 3.3.7) Suppose X is a non-empty open convex set, and f : X → R is twice
continuously differentiable. Then f is convex iff the Hessian of f , H(x), is positive semidefinite
∀x ∈ X.

Proof: Suppose f is convex. Let x̄ ∈ X and d be any direction. Since X is open, for λ > 0
sufficiently small, x̄+ λd ∈ X. We have:

f(x̄+ λd) = f(x̄) +∇f(x̄)T (λd) +
1

2
(λd)TH(x̄)(λd) + ‖λd‖2α(x̄, λd),

where α(x̄, y)→ 0 as y → 0. Using the gradient inequality, we obtain

λ2

(
1

2
dTH(x̄)d+ ‖d‖2α(x̄, λd)

)
≥ 0.

Dividing by λ2 > 0 and letting λ→ 0, we obtain dTH(x̄)d ≥ 0, proving the “only if” part.

Conversely, suppose that H(z) is positive semidefinite for all z ∈ X. Let x, y ∈ S be arbitrary.
Invoking the second-order version of the Taylor’s theorem, we have:

f(y) = f(x) +∇f(x)T (y − x) +
1

2
(y − x)TH(z)(y − x)

for some z which is a convex combination of x and y (and hence z ∈ X). Since H(z) is positive
semidefinite, the gradient inequality holds, and hence f is convex.

In one dimension, the Hessian is the second derivative of the function, the positive semidefiniteness
condition can be stated as f ′′ ≥ 0 ∀x ∈ X.

One can also show the following sufficient (but not necessary!) condition:

Theorem 12 (BSS 3.3.8) Suppose X is a non-empty open convex set, and f : X → R is twice
continuously differentiable. Then f is strictly convex if the Hessian of f , H(x), is positive definite
∀x ∈ X.

For convex (unconstrainted) optimization problems, the optimality conditions of the previous sub-
section can be simplified significantly, providing a single necessary and sufficient condition for global
optimality:

IOE 511/Math 562, Section 1, Fall 2007 17

Theorem 13 Suppose f : X → R is convex and differentiable on X. Then x̄ ∈ X is a global
minimizer iff ∇f(x̄) = 0.

Proof: The necessity of the condition ∇f(x̄) = 0 was established regardless of convexity of the
function.

Suppose ∇f(x̄) = 0. Then, by gradient inequality, f(y) ≥ f(x̄) + ∇f(x̄)T (y − x̄) = f(x̄) for all
y ∈ X, and so x̄ is a global minimizer.

Example 5 Let
f(x) = − ln(1− x1 − x2)− lnx1 − lnx2 .

Then

∇f(x) =

(1
1−x1−x2 −

1
x1

1
1−x1−x2 −

1
x2

)
,

and

H(x) =

(1
1−x1−x2

)2
+
(

1
x1

)2 (
1

1−x1−x2

)2(
1

1−x1−x2

)2 (
1

1−x1−x2

)2
+
(

1
x2

)2

 .

It is actually easy to prove that f(x) is a strictly convex function, and hence that H(x) is positive
definite on its domain X = {(x1, x2) : x1 > 0, x2 > 0, x1 + x2 < 1}. At x̄ =

(
1
3 ,

1
3

)
we have

∇f(x̄) = 0, and so x̄ is the unique global minimizer of f(x).

IOE 511/Math 562, Section 1, Fall 2007 18

5 Line search methods: one-dimensional optimization

5.1 General optimization algorithm

Recall: we are attempting to solve the problem

(P) min f(x)
s.t. x ∈ Rn

where f(x) is differentiable.

Solutions to optimization problems are almost always impossible to obtain directly (or “in closed
form”) — with a few exceptions. Hence, for the most part, we will solve these problems with
iterative algorithms. These algorithms typically require the user to supply a starting point x0.
Beginning at x0, an iterative algorithm will generate a sequence of points {xk}∞k=0 called iterates.
In deciding how to generate the next iterate, xk+1, the algorithms use information about the
function f at the current iterate, xk, and sometimes past iterates x0, . . . , xk−1. In practice, rather
than constructing an infinite sequence of iterates, algorithms stop when an appropriate termination
criterion is satisfied, indicating either that the problem has been solved within a desired accuracy,
or that no further progress can be made.

Most algorithms for unconstrained optimization we will discuss fall into the category of directional
search algorithms:

General directional search optimization algorithm

Initialization Specify an initial guess of the solution x0

Iteration For k = 0, 1, . . .,
If xk is optimal, stop
Otherwise,

• Determine dk — a search directions

• Determine λk > 0 — a step size

• Determine xk+1 = xk + λkdk — a new estimate of the solution.

Choosing the direction Typically, we require that dk is a descent direction of f at xk, that
is,

f(xk + λdk) < f(xk) ∀λ ∈ (0, ε]

for some ε > 0. For the case when f is differentiable, we have shown in Theorem 4 that whenever
∇f(xk) 6= 0, any dk such that ∇f(xk)

Tdk < 0 is a descent direction.

Often, direction is chosen to be of the form

dk = −Dk∇f(xk),

where Dk is a positive definite symmetric matrix. (Why is it important that Dk is positive defi-
nite?)

The following are the two basic methods for choosing the matrix Dk at each iteration; they give
rise to two classic algorithms for unconstrained optimization we are going to discuss in class:

IOE 511/Math 562, Section 1, Fall 2007 19

• Steepest descent: Dk = I, k = 0, 1, 2, . . .

• Newton’s method: Dk = H(xk)
−1 (provided H(xk) = ∇2f(xk) is positive definite.)

Choosing the stepsize After dk is fixed, λk ideally would solve the one-dimensional optimization
problem

min
λ≥0

f(xk + λdk).

This optimization problem is usually also impossible to solve exactly. Instead, λk is computed
(via an iterative procedure referred to as line search) either to approximately solve the above
optimization problem, or to ensure a “sufficient” decrease in the value of f .

Testing for optimality: Based on the optimality conditions, xk is a locally optimal if ∇f(xk) = 0
and H(xk) is positive definite. However, such a point is unlikely to be found. In fact, the most of
the analysis of the algorithms in the above form deals with their limiting behavior, i.e., analyzes the
limit points of the infinite sequence of iterates generated by the algorithm. Thus, to implement the
algorithm in practice, more realistic termination criteria need to be specified. They often hinge, at
least in part, on approximately satisfying, to a certain tolerance, the first order necessary condition
for optimality discussed in the previous section.

We begin by commenting on how the line search can be implemented in practice, and then discuss
methods for choosing dk in more detail.

5.2 Stepsize selection

In the statement of the algorithm above we assumed that at each iteration of the steepest descent
algorithm we are selecting an appropriate stepsize λk. Although in some cases a simple stepsize
selection rule (e.g., λk = 1 for all k, or a pre-determined sequence {λk}∞k=0) is used, often the step
size is chosen by performing a line search, i.e., solving a one-dimensional optimization problem

λk = arg min
λ
θ(λ)

4
= arg min

λ
f(x̄+ λd).

In some (small number of) cases it is possible to find the optimal stepsize “in closed form,” however
in general we need an iterative method to find the solution of this one-dimensional optimization
problem.

There are many methods for solving such problems. We are going to describe two: the bisection
method and Armijo rule.

5.2.1 A bisection algorithm for a line search of a convex function

Suppose that f(x) is a differentiable convex function, and that we seek to solve:

λ̄ = arg min
λ>0

f(x̄+ λd̄),

where x̄ is our current iterate, and d̄ is the current direction generated by an algorithm that seeks
to minimize f(x). We assume that d̄ is a descent direction. Let

θ(λ) = f(x̄+ λd̄),

IOE 511/Math 562, Section 1, Fall 2007 20

whereby θ(λ) is a convex function in the scalar variable λ, and our problem is to solve for

λ̄ = arg min
λ>0

θ(λ).

Applying the necessary and sufficient optimality condition to the convex function θ(λ), we want to
find a value λ̄ for which θ′(λ̄) = 0. It is elementary to show that θ′(λ) = ∇f(x̄+λd̄)T d̄. Therefore,
since d is a descent direction, θ′(0) < 0.

Suppose that we know a value λ̂ > 0 such that θ′(λ̂) > 0. Consider the following bisection algorithm
for solving the equation θ′(λ) ≈ 0.

Step 0 Set k = 0. Set λl := 0 and λu := λ̂.

Step k Set λ̃ = λu+λl
2 and compute θ′(λ̃).

• If θ′(λ̃) > 0, re-set λu := λ̃. Set k ← k + 1.

• If θ′(λ̃) < 0, re-set λl := λ̃. Set k ← k + 1.

• If θ′(λ̃) = 0, stop.

Below are some observations on which the convergence of the algorithm rests:

• After every iteration of the bisection algorithm, the current interval [λl, λu] must contain a
point λ̄ such that θ′(λ̄) = 0.

• At the kth iteration of the bisection algorithm, the length of the current interval [λl, λu] is

L =

(
1

2

)k
(λ̂).

• A value of λ such that |λ− λ̄| ≤ ε can be found in at most⌈
log2

(
λ̂

ε

)⌉

steps of the bisection algorithm.

Suppose that we do not have available a convenient value of a point λ̂ for which θ′(λ̂) > 0. One
way to proceed is to pick an initial “guess” of λ̂ and compute θ′(λ̂). If θ′(λ̂) > 0, then proceed to
the bisection algorithm; if θ′(λ̂) ≤ 0, then re-set λ̂← 2λ̂ and repeat the process.

In practice, we need to run the bisection algorithm with a stopping criterion. Some relevant stopping
criteria are:

• Stop after a fixed number of iterations. That is stop when k = k̄, where k̄ specified by the
user.

• Stop when the interval becomes small. That is, stop when λu − λl ≤ ε, where ε is specified
by the user.

• Stop when |θ′(λ̃)| becomes small. That is, stop when |θ′(λ̃)| ≤ ε, where ε is specified by the
user.

IOE 511/Math 562, Section 1, Fall 2007 21

!5

0

5
Illustration of Armijo’s rule

!

"
(!

)

First order approximation at !=0

Acceptable step lengths

5.2.2 Armijo rule

Very often performing an exact line search by a method such as the bisection method is too expensive
computationally in the context of selecting a step size in an optimization algorithm. (Recall that we
need to perform a line search at every iteration of our algorithm!) On the other hand, if we sacrifice
accuracy of the line search, this can cause inferior performance of the overall algorithm.

The Armijo rule is one of several inexact line search methods which guarantees a sufficient degree
of accuracy to ensure the algorithm convergence.

Armijo rule requires two parameters: 0 < ε < 1 and α > 1. Suppose we are minimizing a function
θ(λ) such that θ′(0) < 0 (which is indeed the case for the line search problems arising in descent
algorithms). Then the first order approximation of θ(λ) at λ = 0 is given by θ(0) + λθ′(0). Define
θ̂(λ) = θ(0) + λεθ′(0) for λ > 0 (see Figure 5.2.2). A stepsize λ̄ is considered acceptable by Armijo
rule if

• θ(λ̄) ≤ θ̂(λ̄) (to assure sufficient decrease of θ) and

• θ(αλ̄) ≥ θ̂(αλ̄) (to prevent the step size from being too small).

The above rule yields a range of acceptable stepsizes. In practice, to find a step size in this range,
Armijo rule is usually implemented in an iterative fashion (in this description we use α = 2), using
a fixed initial value of λ̄ > 0:

Step 0 Set k=0. λ0 = λ̄ > 0.

Step k If θ(λk) ≤ θ̂(λk), choose λk as the step size; stop. If θ(λk) > θ̂(λk), let λk+1 ← 1
2λk,

k ← k + 1.

This iterative scheme is often referred to as backtracking. Note that as a result of backtracking, the
chosen stepsize is λt = λ̄/2t, where t ≥ 0 is the smallest integer such that θ(λ̄/2t) ≤ θ̂(λ̄/2t).

IOE 511/Math 562, Section 1, Fall 2007 22

6 The steepest descent algorithm for unconstrained optimization

6.1 The algorithm

Recall: we are attempting to solve the problem

(P) min f(x)
s.t. x ∈ Rn

where f(x) is differentiable. If x = x̄ is a given point, a direction d is called a descent direction of
f at x̄ if there exists δ > 0 such that f(x̄+ λd) < f(x̄) for all λ ∈ (0, δ). In particular, if

∇f(x̄)Td = lim
λ→0+

f(x̄+ λd)− f(x̄)

λ
< 0,

then d is a descent direction.

The steepest descent algorithm moves along the direction d with ‖d‖ = 1 that minimizes the above
inner product (as a source of motivation, note that f(x) can be approximated by its linear expansion
f(x̄+ λd) ≈ f(x̄) + λ∇f(x̄)Td.)

It is not hard to see that so long as ∇f(x̄) 6= 0, the direction

d̄ =
−∇f(x̄)

‖∇f(x̄)‖
=

−∇f(x̄)√
∇f(x̄)T∇f(x̄)

is the (unit length) direction that minimizes the above inner product. Indeed, for any direction d
with ‖d‖ = 1, the Schwartz inequality yields

∇f(x̄)Td ≥ −‖∇f(x̄)‖ · ‖d‖ = −‖∇f(x̄)‖ = ∇f(x̄)T d̄.

The direction d̄ = −∇f(x̄) is called the direction of steepest descent at the point x̄.

Note that d̄ = −∇f(x̄) is a descent direction as long as ∇f(x̄) 6= 0. To see this, simply observe
that d̄T∇f(x̄) = −∇f(x̄)T∇f(x̄) < 0 so long as ∇f(x̄) 6= 0. Of course, if ∇f(x̄) = 0, then x̄ is a
candidate for local minimizer, i.e., x̄ satisfies the first order necessary optimality condition.

A natural consequence of this is the following algorithm, called the steepest descent algorithm.

Steepest Descent Algorithm:

Step 0 Given x0, set k ← 0

Step 1 dk = −∇f(xk). If dk = 0, then stop.

Step 2 Choose stepsize λk by performing an exact (or inexact) line search, i.e., solving λk =
arg minλ>0 f(x̄+ λdk).

Step 3 Set xk+1 ← xk + λkdk, k ← k + 1. Go to Step 1.

Note from Step 2 and the fact that dk = −∇f(xk) is a descent direction, it follows that f(xk+1) <
f(xk).

IOE 511/Math 562, Section 1, Fall 2007 23

6.2 Global convergence

In this section we will show that, under certain assumptions on the behavior of the function f(·),
the steepest descent algorithm converges to a point that satisfies the first order necessary conditions
for optimality. We will consider two different stepsize selection rules, and correspondingly, will need
to impose different assumptions on the function for each of them to “work.”

Theorem 14 (Convergence Theorem) Suppose that f : Rn → R is continuously differentiable
on the set S(x0) = {x ∈ Rn : f(x) ≤ f(x0)}, and that S(x0) is a closed and bounded set. Suppose
further that the sequence {xk} is generated by the steepest descent algorithm with stepsizes λk
chosen by an exact line search. Then every point x̄ that is a limit point of the sequence {xk}
satisfies ∇f(x̄) = 0.

Proof: Notice that f(xk+1) ≤ f(xk) ≤ f(x0), and thus {xk} ⊆ S(x0). By the Weierstrass’
Theorem, at least one limit point of the sequence {xk} must exist. Let x̄ be any such limit point.
Without loss of generality, assume that limk→∞ xk = x̄.5

We will prove the theorem by contradiction, i.e., assume that ∇f(x̄) 6= 0. This being the case,

there is a value of λ̄ > 0 such that δ
4
= f(x̄) − f(x̄ + λ̄d̄) > 0, where d̄ = −∇f(x̄). Then also

(x̄+ λ̄d̄) ∈ intS. (Why?)

Let {dk} be the sequence of directions generated by the algorithm, i.e., dk = −∇f(xk). Since f is
continuously differentiable, limk→∞ dk = d̄. Then since (x̄+ λ̄d̄) ∈ intS, and (xk+ λ̄dk)→ (x̄+ λ̄d̄),
for k sufficiently large we have

f(xk + λ̄dk) ≤ f(x̄+ λ̄d̄) +
δ

2
= f(x̄)− δ +

δ

2
= f(x̄)− δ

2
.

However,

f(x̄) ≤ f(xk + λkdk) ≤ f(xk + λ̄dk) ≤ f(x̄)− δ

2
,

which is of course a contradiction. Thus d̄ = −∇f(x̄) = 0.

Next, we will study the convergence properties of the steepest descent algorithm with the stepsizes
chosen at each iteration by the Armijo rule; in particular, its backtracking implementation.

We will assume that the function f(x) satisfies the following property: for some G > 0,

‖∇f(x)−∇f(y)‖ ≤ G‖x− y‖ ∀x, y ∈ S(x0) = {x : f(x) ≤ f(x0)}.

It is said that the gradient function ∇f(x) is Lipschitz continuous with constant G > 0 on the set
S(x0). Note that this assumption is stronger than just continuity of ∇f(x).

For example, if the (matrix) norm of the Hessian H(x) is bounded by a constant G > 0 everywhere
on the set S(x0), the gradient function will be Lipschitz continuous.

Theorem 15 (8.6.3) Suppose f : Rn → R is such that its gradient is Lipschitz continuous with
constant G > 0 on the set S(x0). Pick some step parameter λ̄ > 0, and let 0 < ε < 1. Suppose the
sequence {xk} is generated by the steepest descent algorithm with stepsizes chosen by backtracking.
Then every limit point x̄ of the sequence {xk} satisfies ∇f(x̄) = 0.

5To make sure this is, in fact, without loss of generality, follow the steps of the proof carefully, and make sure that
no generality is lost in making this assumption, i.e., in limiting the consideration of {xk} to just a subsequence that
converges to x̄.

IOE 511/Math 562, Section 1, Fall 2007 24

Proof: Let xk be the current iterate generated by the algorithm, λk – the stepsize, and xk+1 – the
next iterate of the steepest descent algorithm. Using the mean value theorem, there is a value x̃,
which is a convex combination of xk and xk+1, such that

f(xk+1)− f(xk) = −λk∇f(xk)
T∇f(x̃)

= −λk∇f(xk)
T (∇f(xk)−∇f(xk) +∇f(x̃))

= −λk‖∇f(xk)‖2 + λk∇f(xk)
T (∇f(xk)−∇f(x̃))

≤ −λk‖∇f(xk)‖2 + λk‖∇f(xk)‖ · ‖∇f(xk)−∇f(x̃)‖
≤ −λk‖∇f(xk)‖2 + λk‖∇f(xk)‖ ·G‖xk − x̃‖
≤ −λk‖∇f(xk)‖2 + λk‖∇f(xk)‖ ·G‖xk − xk+1‖
= −λk‖∇f(xk)‖2 + λ2

kG‖∇f(xk)‖2

= −λk‖∇f(xk)‖2(1− λkG) = − λ̄
2t
‖∇f(xk)‖2

(
1− λ̄

2t
G

)
.

(7)

The last equality uses the form of the stepsize generated by Armijo rule.

Using the fact that θ(λ) = f(xk−λ∇f(xk)), the stopping condition of Armijo rule implementation,
θ(λ̄/2t) ≤ θ̂(λ̄/2t), can be rewritten as

f(xk+1) ≤ f(xk)− (ελ̄/2t)‖∇f(xk)‖2.

Hence, t is the smallest integer such that

f(xk+1)− f(xk) ≤ −
λ̄ε

2t
‖∇f(xk)‖2. (8)

Note that if t is large enough to satisfy

1− λ̄G

2t
≥ ε, (9)

then (7) would imply (8). Therefore, at the next-to-last step of the line search, (9) was not satisfied,
i.e.,

1− λ̄G

2t−1
< ε,

or, rearranging, λ̄ε
2t >

ε(1−ε)
2G . Substituting this into (8), we get

f(xk+1)− f(xk) < −
ε(1− ε)

2G
‖∇f(xk)‖2.

Since {f(xk)} is a monotone decreasing sequence, it has a limit (as long as {xk} has a limit point),
taking limit as k →∞, we get

0 ≤ −ε(1− ε)
2G

lim
k→∞

‖∇f(xk)‖2,

implying that ‖∇f(xk)‖ → 0.

IOE 511/Math 562, Section 1, Fall 2007 25

7 Rate of convergence of steepest descent algorithm

7.1 Properties of quadratic forms

In this subsection we are going to analyze the properties of some of the simplest nonlinear functions
— quadratic forms. The results developed here will be very useful to us in the future, when we
analyze local properties of more complex functions, and the behavior of algorithms.

• A quadratic form is a function f(x) = 1
2x

TQx+ qTx.

• If Q is not symmetric, let Q̄ = 1
2(Q+QT). Then Q̄ is symmetric, and xT Q̄x = xTQx for any

x. So, we can assume wolog that Q is symmetric.

• ∇f(x) = Qx+ q

• H(x) = Q — a constant matrix independent of x.

Proposition 16 f(x) = 1
2x

TQx+ qTx is convex iff Q � 0.

Proof: Follows from Theorem 11.

Corollaries:
f(x) is strictly convex iff Q � 0
f(x) is concave iff Q � 0
f(x) is strictly concave iff Q ≺ 0
f(x) is neither convex nor concave iff Q is indefinite.

Examples of strictly convex quadratic forms:

• f(x) = xTx

• f(x) = (x− a)T (x− a)

• f(x) = (x− a)TD(x− a), where D =

 d1 0
. . .

0 dn

 is diagonal with dj > 0, j = 1, . . . , n.

• f(x) = (x− a)TMTDM(x− a), where M is a non-singular matrix and D is as above.

7.2 The rate of convergence of the steepest descent algorithm for the case of a
quadratic function

In this section we explore answers to the question of how fast the steepest descent algorithm
converges. We say that an algorithm exhibits linear convergence in the objective function values if
there is a constant δ < 1 such that for all k sufficiently large, the iterates xk satisfy:

f(xk+1)− f(x?)

f(xk)− f(x?)
≤ δ,

where x? is an optimal solution of the problem (P). The above statement says that the optimality
gap shrinks by at least δ at each iteration. Notice that if δ = 0.1, for example, then the iterates gain
an extra digit of accuracy in the optimal objective function value at each iteration. If δ = 0.9, for

IOE 511/Math 562, Section 1, Fall 2007 26

example, then the iterates gain an extra digit of accuracy in the optimal objective function value
every 22 iterations, since (0.9)22 ≈ 0.10. The quantity δ above is called the convergence constant.
We would like this constant to be smaller rather than larger.

We will show now that the steepest descent algorithm with stepsizes selected by exact line search
exhibits linear convergence, but that the convergence constant depends very much on the ratio of
the largest to the smallest eigenvalue of the Hessian matrix H(x) at the optimal solution x = x?.
In order to see how this dependence arises, we will examine the case where the objective function
f(x) is itself a simple quadratic function of the form:

f(x) =
1

2
xTQx+ qTx,

where Q is a positive definite symmetric matrix. We will suppose that the eigenvalues of Q are

A = a1 ≥ a2 ≥ . . . ≥ an = a > 0,

i.e, A and a are the largest and smallest eigenvalues of Q. The optimal solution of (P) is easily
computed as:

x? = −Q−1q

and direct substitution shows that the optimal objective function value is:

f(x?) = −1

2
qTQ−1q.

For convenience, let x denote the current point in the steepest descent algorithm. We have:

f(x) =
1

2
xTQx+ qTx

and let d denote the current direction, which is the negative of the gradient, i.e.,

d = −∇f(x) = −Qx− q.

Now let us compute the next iterate of the steepest descent algorithm. If λ is the generic step-length,
then

f(x+ λd) =
1

2
(x+ λd)TQ(x+ λd) + qT (x+ λd)

=
1

2
xTQx+ λdTQx+

1

2
λ2dTQd+ qTx+ λqTd

= f(x)− λdTd+
1

2
λ2dTQd.

Optimizing over the value of λ in this last expression yields

λ =
dTd

dTQd
,

and the next iterate of the algorithm then is

x′ = x+ λd = x+
dTd

dTQd
d,

IOE 511/Math 562, Section 1, Fall 2007 27

and

f(x′) = f(x+ λd) = f(x)− λdTd+
1

2
λ2dTQd = f(x)− 1

2

(dTd)2

dTQd
.

Therefore,

f(x′)− f(x?)

f(x)− f(x?)
=
f(x)− 1

2
(dT d)2

dTQd
− f(x?)

f(x)− f(x?)

= 1−
1
2

(dT d)2

dTQd
1
2x

TQx+ qTx+ 1
2q
TQ−1q

= 1−
1
2

(dT d)2

dTQd
1
2(Qx+ q)tQ−1(Qx+ q)

= 1− (dTd)2

(dTQd)(dTQ−1d)

= 1− 1

β
,

where

β =
(dTQd)(dTQ−1d)

(dTd)2
.

In order for the convergence constant to be good, which will translate to fast linear convergence,
we would like the quantity β to be small. The following result provides an upper bound on the
value of β.

Kantorovich Inequality: Let A and a be the largest and the smallest eigenvalues of Q, respec-
tively. Then

β ≤ (A+ a)2

4Aa
.

We will prove this inequality later. For now, let us apply this inequality to the above analysis.
Continuing, we have

f(x′)− f(x?)

f(x)− f(x?)
= 1− 1

β
≤ 1− 4Aa

(A+ a)2
=

(A− a)2

(A+ a)2
=

(
A/a− 1

A/a+ 1

)2

.

Note by definition that A/a is always at least 1. If A/a is small (not much bigger than 1), then the
convergence constant will be much smaller than 1. However, if A/a is large, then the convergence
constant will be only slightly smaller than 1. The following table shows some sample values:

Upper Bound on Number of Iterations to Reduce
A a 1− 1

β the Optimality Gap by 0.10

1.1 1.0 0.0023 1

3.0 1.0 0.25 2

10.0 1.0 0.67 6

100.0 1.0 0.96 58

200.0 1.0 0.98 116

400.0 1.0 0.99 231

IOE 511/Math 562, Section 1, Fall 2007 28

Note that the number of iterations needed to reduce the optimality gap by 0.10 grows linearly in
the ratio A/a.

Two pictures of possible iterations of the steepest descent algorithm are as follows:

!3 !2 !1 0 1 2 3
!3

!2

!1

0

1

2

3

!3 !2 !1 0 1 2 3
!3

!2

!1

0

1

2

3

7.3 An example

Suppose that

f(x) =
1

2
xTQx+ qTx

where

Q =

(
+4 −2
−2 +2

)
and q =

(
+2
−2

)
.

Then

∇f(x) =

(
+4 −2
−2 +2

)(
x1

x2

)
+

(
+2
−2

)

IOE 511/Math 562, Section 1, Fall 2007 29

and so

x? =

(
0
1

)
and

f(x?) = −1.

Direct computation shows that the eigenvalues of Q are A = 3 +
√

5 and a = 3−
√

5, whereby the
bound on the convergence constant is

1− 1

β
≤ 0.556.

Suppose that x0 = (0, 0). Then we have:

x1 = (−0.4, 0.4), x2 = (0, 0.8),

and the even numbered iterates satisfy

x2k = (0, 1− 0.2k) and f(x2k) =
(

1− 0.2k
)2
− 2 + 2(0.2)k,

and so
‖x2k − x?‖ = 0.2k and f(x2k)− f(x?) = (0.2)2k.

Therefore, starting from the point x0 = (0, 0), the optimality gap goes down by a factor of 0.04
after every two iterations of the algorithm. This convergence is illustrated in this picture (note that
the Y -axis is in logarithmic scale!).

! " # $ % &! &" &# &$
&!

!"'

&!
!"!

&!
!&'

&!
!&!

&!
!'

&!
!

()*+,)-./01

23
4
1
5!
23
4
65

7./8*+9*/:*0.20;)**<*;)0=*;:*/)02>/:)-./08,?>*;

Some remarks:

• The bound on the rate of convergence is attained in practice quite often, which is unfortunate.
The ratio of the largest to the smallest eigenvalue of a matrix is called the condition number
of the matrix.

• What about non-quadratic functions? Most functions behave as near-quadratic functions in
a neighborhood of the optimal solution. The analysis of the non-quadratic case gets very
involved; fortunately, the key intuition is obtained by analyzing the quadratic case.

IOE 511/Math 562, Section 1, Fall 2007 30

Practical termination criteria Ideally, the algorithm will terminate at a point xk such that
∇f(xk) = 0. However, the algorithm is not guaranteed to be able to find such point in finite
amount of time. Moreover, due to rounding errors in computer calculations, the calculated value
of the gradient will have some imprecision in it.

Therefore, in practical algorithms the termination criterion is designed to test if the above condition
is satisfied approximately, so that the resulting output of the algorithm is an approximately optimal
solution. A natural termination criterion for the steepest descent could be ‖∇f(xk)‖ ≤ ε, where ε >
0 is a pre-specified tolerance. However, depending on the scaling of the function, this requirement
can be either unnecessarily stringent, or too loose to ensure near-optimality (consider a problem
concerned with minimizing distance, where the objective function can be expressed in inches, feet,
or miles). Another alternative, that might alleviate the above consideration, is to terminate when
‖∇f(xk)‖ ≤ ε|f(xk)| — this, however, may lead to problems when the objective function at the
optimum is zero. A combined approach is then to terminate when

‖∇f(xk)‖ ≤ ε(1 + |f(xk)|).

The value of ε is typically taken to be at most the square root of the machine tolerance (e.g.,
ε = 10−8 if 16-digit computing is used), due to the error incurred in estimating derivatives.

7.4 Proof of Kantorovich Inequality

Kantorovich Inequality: Let A and a be the largest and the smallest eigenvalues of Q, respec-
tively. Then

β =
(dTQd)(dTQ−1d)

(dTd)2
≤ (A+ a)2

4Aa
.

Proof: Let Q = RDRT , and then Q−1 = RD−1RT , where R = RT is an orthonormal matrix, and
the eigenvalues of Q are

0 < a = a1 ≤ a2 ≤ . . . ≤ an = A,

and

D =

a1 0 . . . 0
0 a2 . . . 0
...

...
. . .

...
0 0 . . . an

 .

Then

β =
(dTRDRTd)(dTRD−1RTd)

(dTRRTd)(dTRRTd)
=
fTDf · fTD−1f

fT f · fT f

where f = RTd. Let λi =
f2i
fT f

. Then λi ≥ 0 and
n∑
i=1

λi = 1, and

β =

n∑
i=1

λiai ·
n∑
i=1

λi

(
1

ai

)
=

n∑
i=1

λi

(
1
ai

)
 1

n∑
i=1

λiai

 .

IOE 511/Math 562, Section 1, Fall 2007 31

The largest value of β is attained when λ1 + λn = 1 (see the following illustration to see why this
must be true). Therefore,

β ≤
λ1

1
a + λn

1
A

1
λ1a+λnA

=
(λ1a+ λnA)(λ1A+ λna)

Aa
≤

(1
2A+ 1

2a)(1
2a+ 1

2A)

Aa
=

(A+ a)2

4Aa
.

Illustration of Kantorovich construction:

0

1/a

a1 an a2 an!1 !i"iai

(a1+an!a)/(a1an)

IOE 511/Math 562, Section 1, Fall 2007 32

8 Newton’s method for minimization

Again, we want to solve
(P) min f(x)

x ∈ Rn.

The Newton’s method can also be interpreted in the framework of the general optimization algo-
rithm, but it truly stems from the Newton’s method for solving systems of nonlinear equations.
Recall that if g : Rn → Rn, to solve the system of equations

g(x) = 0,

one can apply an iterative method. Starting at a point x0, approximate the function g by g(x0+d) ≈
g(x0) +∇g(x0)Td, where ∇g(x0)T ∈ Rn×n is the Jacobian of g at x0, and provided that ∇g(x0) is
non-singular, solve the system of linear equations

∇g(x0)Td = −g(x0)

to obtain d. Set the next iterate x1 = x0 + d, and continue. This method is well-studied, and is
well-known for its good performance when the starting point x0 is chosen appropriately. However,
for other choices of x0 the algorithm may not converge, as demonstrated in the following well-known
picture:

g(x)

0

x

x0 x2x1x3

The Newton’s method for minimization is precisely an application of this equation-solving method
to the (system of) first-order optimality conditions ∇f(x) = 0. As such, the algorithm does not
distinguish between local minimizers, maximizers, or saddle points.

Here is another view of the motivation behind the Newton’s method for optimization. At x = x̄,
f(x) can be approximated by

f(x) ≈ q(x)
4
= f(x̄) +∇f(x̄)T (x− x̄) +

1

2
(x− x̄)TH(x̄)(x− x̄),

which is the quadratic Taylor expansion of f(x) at x = x̄. q(x) is a quadratic function which, if it
is convex, is minimized by solving ∇q(x) = 0, i.e., ∇f(x̄) +H(x̄)(x− x̄) = 0, which yields

x = x̄−H(x̄)−1∇f(x̄).

The direction −H(x̄)−1∇f(x̄) is called the Newton direction, or the Newton step.

This leads to the following algorithm for solving (P):

IOE 511/Math 562, Section 1, Fall 2007 33

Newton’s Method:

Step 0 Given x0, set k ← 0

Step 1 dk = −H(xk)
−1∇f(xk). If dk = 0, then stop.

Step 2 Choose stepsize λk = 1.

Step 3 Set xk+1 ← xk + λkdk, k ← k + 1. Go to Step 1.

Proposition 17 If H(x) � 0, then d = −H(x)−1∇f(x) is a descent direction.

Proof: It is sufficient to show that ∇f(x)Td = −∇f(x)TH(x)−1∇f(x) < 0. Since H(x) is positive
definite, if v 6= 0,

0 < (H(x)−1v)TH(x)(H(x)−1v) = vTH(x)−1v,

completing the proof.

Note that:

• Work per iteration: O(n3)

• The iterates of Newton’s method are, in general, equally attracted to local minima and local
maxima. Indeed, the method is just trying to solve the system of equations ∇f(x) = 0.

• There is no guarantee that f(xk+1) ≤ f(xk).

• Step 2 could be augmented by a linesearch of f(xk + λdk) over the value of λ; then previous
consideration would not be an issue.

• The method assumes H(xk) is nonsingular at each iteration. Moreover, unless H(xk) is
positive definite, dk is not guaranteed to be a descent direction.

• What if H(xk) becomes increasingly singular (or not positive definite)? Use H(xk) + εI.

• In general, points generated by the Newton’s method as it is described above, may not
converge. For example, H(xk)

−1 may not exist. Even if H(x) is always non-singular, the
method may not converge, unless started “close enough” to the right point.

Example 1: Let f(x) = 7x− ln(x). Then ∇f(x) = f ′(x) = 7− 1
x and H(x) = f ′′(x) = 1

x2
. It is not

hard to check that x? = 1
7 = 0.142857143 is the unique global minimizer. The Newton direction at

x is

d = −H(x)−1∇f(x) = − f
′(x)

f ′′(x)
= −x2

(
7− 1

x

)
= x− 7x2,

and is defined so long as x > 0. So, Newton’s method will generate the sequence of iterates {xk}
with xk+1 = xk+(xk−7(xk)

2) = 2xk−7(xk)
2. Below are some examples of the sequences generated

IOE 511/Math 562, Section 1, Fall 2007 34

by this method for different starting points:

k xk xk xk
0 1 0.1 0.01
1 −5 0.13 0.0193
2 0.1417 0.03599257
3 0.14284777 0.062916884
4 0.142857142 0.098124028
5 0.142857143 0.128849782
6 0.1414837
7 0.142843938
8 0.142857142
9 0.142857143
10 0.142857143

(note that the iterate in the first column is not in the domain of the objective function, so the
algorithm has to terminate...).

Example 2: f(x) = − ln(1− x1 − x2)− lnx1 − lnx2.

∇f(x) =

[1
1−x1−x2 −

1
x1

1
1−x1−x2 −

1
x2

]
,

H(x) =

 (1
1−x1−x2

)2
+
(

1
x1

)2 (
1

1−x1−x2

)2(
1

1−x1−x2

)2 (
1

1−x1−x2

)2
+
(

1
x2

)2

 .
x? =

(
1
3 ,

1
3

)
, f(x?) = 3.295836866.

k (xk)1 (xk)2 ‖xk − x̄‖
0 0.85 0.05 0.58925565098879
1 0.717006802721088 0.0965986394557823 0.450831061926011
2 0.512975199133209 0.176479706723556 0.238483249157462
3 0.352478577567272 0.273248784105084 0.0630610294297446
4 0.338449016006352 0.32623807005996 0.00874716926379655
5 0.333337722134802 0.333259330511655 7.41328482837195e−5

6 0.333333343617612 0.33333332724128 1.19532211855443e−8

7 0.333333333333333 0.333333333333333 1.57009245868378e−16

Termination criteria Since Newton’s method is working with the Hessian as well as the gradient,
it would be natural to augment the termination criterion we used in the Steepest Descent algorithm
with the requirement that H(xk) is positive semi-definite, or, taking into account the potential for
the computational errors, that H(xk) + εI is positive semi-definite for some ε > 0 (this parameter
may be different than the one used in the condition on the gradient).

8.1 Convergence analysis of Newton’s method

8.1.1 Rate of convergence

Suppose we have a converging sequence limk→∞ sk = s̄, and we would like to characterize the speed,
or rate, at which the iterates sk approach the limit s̄.

IOE 511/Math 562, Section 1, Fall 2007 35

A converging sequence of numbers {sk} exhibits linear convergence if for some 0 ≤ C < 1,

lim sup
k→∞

|sk+1 − s̄|
|sk − s̄|

= C.

“lim sup
k→∞

” denotes the largest of the limit points of a sequence (possibly infinite). C in the above

expression is referred to as the rate constant ; if C = 0, the sequence exhibits superlinear conver-
gence.

A sequence of numbers {sk} exhibits quadratic convergence if it converges to some limit s̄ and

lim sup
k→∞

|sk+1 − s̄|
|sk − s̄|2

= δ <∞.

Examples:

Linear convergence sk =
(

1
10

)k
: 0.1, 0.01, 0.001, etc. s̄ = 0.

|sk+1 − s̄|
|sk − s̄|

= 0.1.

Superlinear convergence sk = 0.1 · 1
k! :

1
10 , 1

20 , 1
60 , 1

240 , 1
1250 , etc. s̄ = 0.

|sk+1 − s̄|
|sk − s̄|

=
k!

(k + 1)!
=

1

k + 1
→ 0 as k →∞.

Quadratic convergence sk =
(

1
10

)(2k−1)
: 0.1, 0.01, 0.0001, 0.00000001, etc. s̄ = 0.

|sk+1 − s̄|
|sk − s̄|2

=
(102k−1

)2

102k
= 1.

This illustration compares the rates of convergence of the above sequences:

Since an algorithm for nonlinear optimization problems, in its abstract form, generates an infinite
sequence of points {xk} converging to a solution x̄ only in the limit, it makes sense to discuss the
rate of convergence of the sequence ‖ek‖ = ‖xk − x̄‖, or Ek = |f(xk) − f(x̄)|, which both have
limit 0. For example, in the previous section we’ve shown that, on a convex quadratic function, the
steepest descent algorithm exhibits linear convergence, with rate bounded by the condition number
of the Hessian. For non-quadratic functions, the steepest descent algorithm behaves similarly in
the limit, i.e., once the iterates reach a small neighborhood of the limit point.

IOE 511/Math 562, Section 1, Fall 2007 36

8.1.2 Rate of convergence of the pure Newton’s method

We have seen from our examples that, even for convex functions, the Newton’s method in its pure
form (i.e., with stepsize of 1 at every iteration) does not guarantee descent at each iteration, and
may produce a diverging sequence of iterates. Moreover, each iteration of the Newton’s method
is much more computationally intensive then that of the steepest descent. However, under certain
conditions, the method exhibits quadratic rate of convergence, making it the “ideal” method for
solving convex optimization problems. Recall that a method exhibits quadratic convergence when
‖ek‖ = ‖xk − x̄‖ → 0 and

lim
k→∞

‖ek+1‖
‖ek‖2

= C.

Roughly speaking, if the iterates converge quadratically, the accuracy (i.e., the number of correct
digits) of the solution doubles in a fixed number of iterations.

There are many ways to state and prove results regarding the convergence on the Newton’s method.
We provide one that provides a particular insight into the circumstances under which pure Newton’s
method demonstrates quadratic convergence (compare the theorem below to BSS 8.6.5).

Let ‖v‖ denote the usual Euclidian norm of a vector, namely ‖v‖ :=
√
vT v. Recall that the operator

norm of a matrix M is defined as follows:

‖M‖ := max
x
{‖Mx‖ : ‖x‖ = 1}.

As a consequence of this definition, for any x, ‖Mx‖ ≤ ‖M‖ · ‖x‖.

Theorem 18 (Quadratic convergence) Suppose f(x) is twice continuously differentiable and
x? is a point for which ∇f(x?) = 0. Suppose H(x) satisfies the following conditions:

• there exists a scalar h > 0 for which ‖[H(x?)]−1‖ ≤ 1
h

• there exists scalars β > 0 and L > 0 for which ‖H(x) − H(y)‖ ≤ L‖x − y‖ for all x and y
satisfying ‖x− x?‖ ≤ β and ‖y − x?‖ ≤ β.

Let x satisfy ‖x−x?‖ ≤ δγ, where 0 < δ < 1 and γ := min
{
β, 2h

3L

}
, and let xN := x−H(x)−1∇f(x).

Then:

(i) ‖xN − x?‖ ≤ ‖x− x?‖2
(

L
2(h−L‖x−x?‖)

)
(ii) ‖xN − x?‖ < δ‖x− x?‖, and hence the iterates converge to x?

(iii) ‖xN − x?‖ ≤ ‖x− x?‖2
(

3L
2h

)
.

The proof relies on the following two “elementary” facts.

Proposition 19 Suppose that M is a symmetric matrix. Then the following are equivalent:

1. h > 0 satisfies ‖M−1‖ ≤ 1
h

2. h > 0 satisfies ‖Mv‖ ≥ h · ‖v‖ for any vector v

Proof: Left as an exercise.

Proposition 20 Suppose that f(x) is twice differentiable. Then

∇f(z)−∇f(x) =

∫ 1

0
[H(x+ t(z − x))] (z − x)dt .

IOE 511/Math 562, Section 1, Fall 2007 37

Proof: Let φ(t) := ∇f(x + t(z − x)). Then φ(0) = ∇f(x) and φ(1) = ∇f(z), and φ
′
(t) =

[H(x+ t(z − x))] (z − x). From the fundamental theorem of calculus, we have:

∇f(z)−∇f(x) = φ(1)− φ(0)

=

∫ 1

0
φ
′
(t)dt

=

∫ 1

0
[H(x+ t(z − x))] (z − x)dt .

Proof of Theorem 18

We have:

xN − x? = x−H(x)−1∇f(x)− x?

= x− x? +H(x)−1 (∇f(x?)−∇f(x))

= x− x? +H(x)−1

∫ 1

0
[H(x+ t(x? − x))] (x? − x)dt (from Proposition 20)

= H(x)−1

∫ 1

0
[H(x+ t(x? − x))−H(x)] (x? − x)dt.

Therefore

‖xN − x?‖ ≤ ‖H(x)−1‖
∫ 1

0
‖ [H(x+ t(x? − x))−H(x)] ‖ · ‖(x? − x)‖dt

≤ ‖x? − x‖ · ‖H(x)−1‖
∫ 1

0
L · t · ‖(x? − x)‖dt

= ‖x? − x‖2‖H(x)−1‖L
∫ 1

0
tdt

=
‖x? − x‖2‖H(x)−1‖L

2
.

We now bound ‖H(x)−1‖. Let v be any vector. Then

‖H(x)v‖ = ‖H(x?)v + (H(x)−H(x?))v‖
≥ ‖H(x?)v‖ − ‖(H(x)−H(x?))v‖
≥ h · ‖v‖ − ‖H(x)−H(x?)‖‖v‖ (from Proposition 19)

≥ h · ‖v‖ − L‖x? − x‖ · ‖v‖
= (h− L‖x? − x‖) · ‖v‖ .

Invoking Proposition 19 again, we see that this implies that

‖H(x)−1‖ ≤ 1

h− L‖x? − x‖
.

Combining this with the above yields

‖xN − x?‖ ≤ ‖x? − x‖2 ·
L

2 (h− L‖x? − x‖)
,

IOE 511/Math 562, Section 1, Fall 2007 38

which is (i) of the theorem. Because L‖x? − x‖ ≤ δ · 2h
3 < 2h

3 we have:

‖xN − x?‖ ≤ ‖x? − x‖ ·
L‖x? − x‖

2 (h− L‖x? − x‖)
≤

δ · 2h
3

2
(
h− 2h

3

)‖x? − x‖ = δ‖x? − x‖ ,

which establishes (ii) of the theorem. Finally, we have

‖xN − x?‖ ≤ ‖x? − x‖2
L

2 (h− L‖x? − x‖)
≤ ‖x? − x‖2 · L

2
(
h− 2h

3

) =
3L

2h
‖x? − x‖2 ,

which establishes (iii) of the theorem.

Notice that the results regarding the convergence and rate of convergence in the above theorem
are local, i.e., they apply only if the algorithm is initialized at certain starting points (the ones
“sufficiently close” to the desired limit). In practice, it is not known how to pick such starting
points, or to check if the proposed starting point is adequate. (With the very important exception
of self-concordant functions.)

8.2 Further discussion and modifications of the Newton’s method

8.2.1 Global convergence for strongly convex functions with a two-phase Newton’s
method

We have noted that, to ensure descent at each iteration, the Newton’s method can be augmented
by a line search. This idea can be formalized, and the efficiency of the resulting algorithm can be
analyzed (see, for example, “Convex Optimization” by Stephen Boyd and Lieven Vandenberghe,
available at http://www.stanford.edu/~boyd/cvxbook.html for a fairly simple presentation of
the analysis).

Suppose that f(x) is strongly convex on it domain, i.e., assume there exists µ > 0 such that
H(x) − µI is positive semidefinite for all x (I is the identity matrix), and that the Hessian is
Lipschitz continuous everywhere on the domain of f . Suppose we apply the Newton’s method with
the stepsize at each iteration determined by the backtracking procedure of section 5.2.2. That is, at
each iteration of the algorithm we first attempt to take a full Newton step, but reduce the stepsize
if the decrease in the function value is not sufficient. Then there exist positive numbers η and γ
such that

• if ‖∇f(xk)‖ ≥ η, then f(xk+1)− f(xk) ≤ −γ, and

• if ‖∇f(xk)‖ < η, then stepsize λk = 1 will be selected, and the next iterate will satisfy
‖∇f(xk+1)‖ < η, and so will all the further iterates. Moreover, quadratic convergence will be
observed in this phase.

As hinted above, the algorithm will proceed in two phases: while the iterates are far from the
minimizer, a “dampening” of the Newton step will be required, but there will be a guaranteed
decrease in the objective function values. This phase (referred to as “dampened Newton phase”)

cannot take more than f(x0)−f(x?)
γ iterations. Once the norm of the gradient becomes sufficiently

small, no dampening of the Newton step will required in the rest of the algorithm, and quadratic
convergence will be observed, thus making it the “quadratically convergence phase.”

IOE 511/Math 562, Section 1, Fall 2007 39

Note that it is not necessary to know the values of η and γ to apply this version of the algorithm!
The two-phase Newton’s method is globally convergent; however, to ensure global convergence, the
function being minimized needs to posses particularly nice global properties.

8.2.2 Other modifications of the Newton’s method

We have seen that if Newton’s method is initialized sufficiently close to the point x̄ such that
∇f(x̄) = 0 and H(x̄) is positive definite (i.e., x̄ is a local minimizer), then it will converge quadrat-
ically, using stepsizes of λ = 1. There are three issues in the above statement that we should be
concerned with:

• What if H(x̄) is singular, or nearly-singular?

• How do we know if we are “close enough,” and what to do if we are not?

• Can we modify Newton’s method to guarantee global convergence?

In the previous subsection we “assumed away” the first issue, and, under an additional assumption,
showed how to address the other two. What if the function f is not strongly convex, and H(x)
may approach singularity?

There are two popular approaches (which are actually closely related) to address these issues. The
first approach ensures that the method always uses a descent direction. For example, instead of
the direction −H(xk)

−1∇f(xk), use the direction −(H(xk)+ εkI)−1∇f(xk), where εk ≥ 0 is chosen
so that the smallest eigenvalue of H(xk) + εkI is bounded below by a fixed number δ > 0. It
is important to choose the value of δ appropriately — if it is chosen to be too small, the matrix
employed in computing the direction can become ill-conditioned if H(x̄) is nearly singular; if it
is chosen to be too large, the direction becomes nearly that of the steepest descent algorithm,
and hence only linear convergence can be guaranteed. Hence, the value of εk is often chosen
dynamically.

The second approach is the so-called trust region method. Note that the main idea behind the
Newton’s method is to represent the function f(x) by its quadratic approximation qk(x) = f(xk) +
∇f(xk)

T (x − xk) + 1
2(x − xk)TH(xk)(x − xk) around the current iterate, and then minimize that

approximation. While locally the approximation is a good one, this may no longer be the case
when a large step is taken. The trust region methods hence find the next iterate by solving the
following constrained optimization problem:

min qk(x) s.t. ‖x− xk‖ ≤ ∆k

(as it turns out, this problem is not much harder to solve than the unconstrained minimization of
qk(s)).

The value of ∆k is set to represent the size of the region in which we can “trust” qk(x) to provide
a good approximation of f(x). Smaller values of ∆k ensure that we are working with an accurate
representation of f(x), but result in conservative steps. Larger values of ∆k allow for larger steps,
but may lead to inaccurate estimation of the objective function. To account for this, the value if ∆k

is updated dynamically throughout the algorithm, namely, it is increased if it is observed that qk(x)
provided an exceptionally good approximation of f(x) at the previous iteration, and decreased is
the approximation was exceptionally bad.

IOE 511/Math 562, Section 1, Fall 2007 40

8.3 Quasi-Newton (secant) methods

Quasi-Newton methods are probably the most popular general-purpose algorithms for uncon-
strained optimization. The basic idea behind quasi-Newton methods is quite simple. A typical
iteration of the method is

xk+1 = xk + λkdk, where dk = −Dk∇f(xk),

where Dk is a positive definite matrix (which is adjusted from iteration to iteration) chosen so that
the directions dk tend to approximate Newton’s direction. The stepsize λk is usually chosen by a
line search.

Many quasi-Newton methods are advantageous due to their fast convergence and absence of second-
order derivative computation.

8.3.1 The Broyden family

Of course, what makes a quasi-Newton method work is the choice of the matrix Dk at each iteration.
The important idea behind the methods is that two successive iterates xk and xk+1 together with the
gradients ∇f(xk) and ∇f(xk+1) contain curvature (i.e., Hessian) information, in particular,

(∇f(xk+1)−∇f(xk)) ≈ H(xk+1)(xk+1 − xk)

(observe that the above approximation is an equality when the function in question is quadratic).
Therefore, at every iteration we would like to choose Dk+1 to satisfy

Dk+1qk = pk, where pk = xk+1 − xk, qk = ∇f(xk+1)−∇f(xk). (10)

Equation (10) is known as the quasi-Newton condition, or the secant equation.

Suppose that at every iteration we update the matrix Dk+1 by taking the matrix Dk and adding a
“correction” term Ck. Then the secant equation becomes

(Dk + Ck)qk = pk ⇒ Ckqk = pk −Dkqk. (11)

Note that equation (11) leaves us a lot of flexibility in selecting the correction matrix Ck. The most
popular update methods come from the following (parametric) family of matrices (the subscript k
is omitted in most of the following formulas for simplicity, here D = Dk):

CB(φ) =
ppT

pT q
− DqqTD

qTDq
+ φτvvT , where v =

p

pT q
− Dq

τ
, τ = qTDq (12)

(it is not hard to verify that these updates indeed satisfy the secant equation).

The choice of the scalar φ ∈ [0, 1], which parameterizes the family of matrices C, gives rise to
several popular choices of updates. In particular:

• Setting φ = 0 at each iteration, we obtain the so-called DFP (Davidson-Fletcher-Powell)
update:

CDFP = CB(0) =
ppT

pT q
− DqqTD

qTDq
,

which is historically the first quasi-Newton method.

IOE 511/Math 562, Section 1, Fall 2007 41

• Setting φ = 1 at each iteration, we obtain the BFGS (Broyden-Fletcher-Goldfarb-Shanno)
update:

CBFGS = CB(1) =
ppT

pT q

[
1 +

qTDq

pT q

]
− DqpT + pqTD

pT q
.

The resulting method has been shown to be superior to other updating schemes in its overall
performance.

• A general member of the Broyden family (12) can therefore be written as a convex combination
of the two above updates:

CB(φ) = (1− φ)CDFP + φCBFGS

The following two results demonstrate that quasi-Newton methods generate descent search direc-
tions (as long as exact line searches are performed, and the initial approximation D1 is positive
definite), and, when applied to a quadratic function, converge in finite number of iterations.

Proposition 21 If Dk is positive definite and the stepsize λk is chosen so that xk+1 satisfies

(∇f(xk)−∇f(xk+1)Tdk < 0,

then Dk+1 given by (12) is positive definite (and hence dk+1 is a descent direction).

Note that if exact line search is performed, ∇f(xk+1)Tdk = 0, so that condition above is satisfied.

Proposition 22 If the quasi-Newton method with matrices Dk generated by (12) is applied to
minimization of a positive-definite quadratic function f(x) = 1

2x
TQx− qTx, then Dn+1 = Q−1.

(In fact, for a quadratic function, the vectors di, i = 1, . . . , n are so-called Q-conjugate direc-
tions, and, if D1 = I, the method actually coincides with the so-called conjugate gradient algo-
rithm.)

8.3.2 BFGS method

An alternative to maintaining the matrix Dk above which approximates the inverse of the Hessian,
one could maintain a positive definite matrix Bk which would approximate the Hessian itself.
Viewed from this perspective, the secant equation can be written as

qk = Bk+1pk = (Bk + C̃k)pk ⇒ C̃kpk = qk −Bkpk,

where C̃ is the “correction” matrix in this setting. Analogously to CB(φ), one can construct a
parametric family of update matrices

C̃(φ) =
qqT

qT p
− BppTB

pTBp
+ φτvvT , where v =

q

qT p
− Bp

τ
, τ = qTBq.

Using φ = 0, we obtain the update used in the BFGS (Broyden-Fletcher-Goldfarb-Shanno) method:

C̃BFGS =
qqT

qT p
− BppTB

pTBp
.

(If it seems like we have two different objects referred to as “the BFGS,” fear not — in fact, if
D = B−1, then D + CBFGS = (B + C̃BFGS)−1, so the two BFGS updates are consistent with each
other.)

IOE 511/Math 562, Section 1, Fall 2007 42

When using this method, the search direction at each iteration has to be obtained by solving the
system of equations

Bk+1dk+1 = −∇f(xk+1).

It may appear that this will require a lot of computation, and approximating the inverse of the
Hessian directly (as was done in the previous subsection) is a better approach. However, obtaining
solutions to these systems is implemented quite efficiently by maintaining the so-called Cholesky
factorization of the matrix Bk+1 = LΛLT (here L is a lower triangular matrix, and Λ is a diagonal
matrix). This factorization is easy to implement and update and is numerically stable. In addition,
if the line searches are not performed to sufficient precision (in particular, the resulting iterates do
not satisfy the conditions of Proposition 21), the matrices Dk are not guaranteed to be positive
definite. This would be fairly hard to detect, and can lead to bad choice of direction dk. On the
other hand, maintaining the Cholesky factorization of the matrix Bk immediately allows us to check
the signs of eigenvalues of Bk (just look at the elements of Λ), and if needed add a correction term
to maintain positive definiteness.

8.3.3 A final note

Quasi-Newton methods (typically with BFGS update of one form of another) are usually the algo-
rithms of choice in unconstrained optimization software.

The optimization toolbox in MATLAB implements quite a few gradient descent methods in its
function fminunc. The default method for small-to-medium size problems is the BFGS method
(with update C̃BFGS). The formula for gradient of the function f can be provided as a subroutine;
if not available, the gradients will be approximated numerically.

The software allows you to change the algorithm used to DFP quasi-Newton method which approx-
imates the inverse of the Hessian, or to steepest descent (the later, however, is “not recommended”
by the manual).

For large-scaled problems, MATLAB implements a version of Newton’s algorithms. An interesting
aspect of the implementation (as is the case with many implementations of Newton’s method) is
that the computation of the direction d = −H(x)−1∇f(x) is often performed approximately by
applying a few iterations of the above-mentioned conjugate gradient algorithm to solve the linear
system H(x)d = −∇f(x).

IOE 511/Math 562, Section 1, Fall 2007 43

9 Constrained optimization — optimality conditions

9.1 Introduction

Recall that a constrained optimization problem is a problem of the form

(P) min f(x)
s.t. g(x) ≤ 0

h(x) = 0
x ∈ X,

where X is an open set and g(x) = (g1(x), . . . , gm(x))T : Rn → Rm, h(x) = (h1(x), . . . , hl(x))T :
Rn → Rl. Let S denote the feasible set of (P), i.e.,

S
4
= {x ∈ X : g(x) ≤ 0, h(x) = 0}.

Then the problem (P) can be written as minx∈S f(x). Recall that x̄ is a local minimizer of (P) if
∃ε > 0 such that f(x̄) ≤ f(y) for all y ∈ S ∩Bε(x̄). Local, global minimizers and maximizers, strict
and non-strict, are defined analogously.

We will often use the following “shorthand” notation:

∇g(x) = [∇g1(x), ∇g2(x), · · · ∇gm(x)] and ∇h(x) = [∇h1(x), ∇h2(x), · · · ∇gl(x)] ,

i.e., ∇g(x)T ∈ Rm×n and ∇h(x)T ∈ Rl×n are Jacobian matrices, whose ith row is the transpose of
the corresponding gradient.6

9.2 Necessary Optimality Conditions: Geometric view

We define a set C ⊆ Rn to be a cone if for every x ∈ C, αx ∈ C for any α > 0. A set C is a convex
cone if C is a cone and C is a convex set.

Suppose x̄ ∈ S. We make the following definitions:

F0 = {d : ∇f(x̄)Td < 0} — elements of this cone are improving directions of f at x̄.

I = {i : gi(x̄) = 0} — the indices of binding inequality constraints.

G0 = {d : ∇gi(x̄)Td < 0 ∀i ∈ I}— elements of this cone are inward directions of binding inequality
constraints.

H0 = {d : ∇hi(x̄)Td = 0 ∀i = 1, . . . , l} — the cone of tangent directions of equality con-
straints.

Note that, while all elements of F0 are clearly improving directions, this cone does not necessarily
contain all improving directions: indeed, we can have a direction d which is an improving direction,
but ∇f(x̄)Td = 0. Same is true for G0: all its elements are inward directions of the binding
constraints, but it may not include all such directions.7

6BSS uses a different notation for the Jacobian — they denote the Jacobian of g by ∇g. I don’t like their notation,
because it is inconsistent when g returns values in R1.

7For a more detailed discussion of this point, see BSS section 4.2.

IOE 511/Math 562, Section 1, Fall 2007 44

Theorem 23 (cf. BSS 4.3.1, linear equalities) Assume that h(x) is a linear function, i.e.,
h(x) = Ax− b for A ∈ Rl×n. If x̄ is a local minimizer of (P), then F0 ∩G0 ∩H0 = ∅.

Proof: Let

A =

 aT1
...
aTl

 , where ai ∈ Rn, i = 1, . . . , l.

Then hi(x) = aTi x−bi and ∇hi(x) = ai, i.e., H0 = {d : aTi d = 0, i = 1, . . . , l} = {d : Ad = 0}.

Suppose d ∈ F0 ∩ G0 ∩ H0. Then for all λ > 0 sufficiently small gi(x̄ + λd) < gi(x̄) = 0 ∀i ∈ I
(for i 6∈ I, since λ is small, gi(x̄ + λd) < 0 by continuity), and h(x̄ + λd) = (Ax̄ − b) + λAd = 0.
Therefore, x̄+ λd ∈ S for all λ > 0 sufficiently small. On the other hand, for all sufficiently small
λ > 0, f(x̄ + λd) < f(x̄). This contradicts the assumption that x̄ is a local minimizer of (P).

To extend the above theorem to include general equality functions, we need the following tool,
known as the Implicit Function Theorem.

Example: Let h(x) = Ax − b, where A ∈ Rl×n has full row rank (i.e., its rows are linearly
independent). Notice that ∇h(x) = AT , and the Jacobian of h(·) is equal to A.

We can partition columns of A and elements of x as follows: A = [B,N], x = (y; z), so that
B ∈ Rl×l is non-singular, and h(x) = By +Nz − b, ∇yh(x)T = B and ∇zh(x)T = N .

Let s(z) = B−1b−B−1Nz. Then for any z, h(s(z), z) = Bs(z)+Nz−b = 0, i.e., x = (s(z), z) solves
h(x) = 0. Moreover, ∇s(z) = −NT (BT)−1. This idea of “invertability” of a system of equations is
generalized (although only locally) by the following theorem (we will preserve the notation used in
the example):

Theorem 24 (IFT) Let h(x) : Rn → Rl and x̄ = (ȳ1, . . . , ȳl, z̄1, . . . , z̄n−l) = (ȳ, z̄) satisfy:

1. h(x̄) = 0

2. h(x) is continuously differentiable in a neighborhood of x̄

3. The l × l Jacobian matrix

∇yh(ȳ, z̄)T =

∂h1(x̄)
∂y1

· · · ∂h1(x̄)
∂yl

...
. . .

...
∂hl(x̄)
∂y1

· · · ∂hl(x̄)
∂yl

is non-singular.

Then there exists ε > 0 along with functions s(z) = (s1(z), . . . , sl(z))
T such that s(z̄) = ȳ and

∀z ∈ Nε(z̄), h(s(z), z) = 0. Moreover, for all z ∈ Nε(z̄) sk(z) are continuously differentiable and

∇s(z) = −∇zh(s(z), z) · (∇yh(s(z), z))−1.

Example Consider h(x) = x2
1 + x2

2 − 1. Then ∇h(x) = (2x1, 2x2)T . Let also x̄ = 1√
2
e. We will

use the IFT to formalize the fact that, locally, the implicit function h(x) = 0 can be written as an
explicit function x2 =

√
1− x2

1.

IOE 511/Math 562, Section 1, Fall 2007 45

Let y = x2 (notice that ∂h(x̄)
∂x2

=
√

2 6= 0, so this is a valid choice). Then z = x1, and the desired

function is s(z) =
√

1− z2. It is easy to verify that h(s(z), z) = 0 in a small neighborhood of
z̄ = 1/

√
2. In particular, the neighborhood has to be small enough to be contained in the interval

(−1, 1). Moreover,

∂s(z)

∂z
= −∇zh(s(z), z) · 1

∇yh(s(z), z)
= −2z · 1

2
√

1− z2
= − z√

1− z2
.

Notice that the explicit function we derived only works locally; in the neighborhood of the point
−x̄, for example, the explicit form of the function is different. Moreover, in a neighborhood of the
point (1, 0), x2 cannot be written as a function of x1 — indeed, the corresponding submatrix of the
Jacobian is singluar. However, x1 can be expressed as a function of x2 around that point.

Theorem 25 (cf. BSS 4.3.1) If x̄ is a local minimizer of (P) and the gradient vectors ∇hi(x̄), i =
1, . . . , l are linearly independent, then F0 ∩G0 ∩H0 = ∅.

Proof: Since, by assumption, ∇h(x̄)T ∈ Rl×n has full row rank, from the IFT, elements of x̄ can
be re-arranged so that x̄ = (ȳ; z̄) and there exists s(z) such that s(z̄) = ȳ and h(s(z), z) = 0 for z
in a small neighborhood of z̄.

Suppose d = F0∩G0∩H0. Let d = (q; p), where the partition is done in the same way as above. Let
z(λ) = z̄ + λp, y(λ) = s(z(λ)) = s(z̄ + λp), and x(λ) = (y(λ), z(λ)). We will derive a contradiction
by showing that for small λ > 0, x(λ) is feasible and f(x(λ)) < f(x̄).

To show feasibility, first note that for all λ sufficiently close to 0 (positive and negative), by
IFT,

h(x(λ)) = h(s(z(λ)), z(λ)) = 0. (13)

We can show that ∂xk(λ)
∂λ

∣∣∣
λ=0

= dk for k = 1, . . . , n (or ∂x(λ)
∂λ

∣∣∣
λ=0

= d) — see Proposition 26.

Using Taylor’s expansion around λ = 0, we have for i ∈ I,

gi(x(λ)) = gi(x̄) + λ
∂gi(x(λ))

∂λ

∣∣∣∣
λ=0

+ |λ|αi(λ)

= λ
n∑
k=1

∂gi(x(λ))

∂xk
· ∂xk(λ)

∂λ

∣∣∣∣
λ=0

+ |λ|αi(λ)

= λ∇gi(x̄)Td+ |λ|αi(λ),

where αi(λ)→ 0 as λ→ 0. Hence gi(x(λ)) < 0 for all i = 1, . . . ,m for λ > 0 sufficiently small, and
therefore, x(λ) is feasible for any λ > 0 sufficiently small.

On the other hand,
f(x(λ)) = f(x̄) + λ∇f(x̄)Td+ |λ|α(λ) < f(x̄)

for λ > 0 sufficiently small, which contradicts local optimality of x̄.

Proposition 26 Let x(λ) and d be as defined in Theorem 25. Then ∂x(λ)
∂λ

∣∣∣
λ=0

= d.

Proof: We will continue with the notation and definitions in the statement and proof of Theorem

25. Recall that x(λ) = (y(λ), z(λ)), where z(λ) = z̄ + λp, so, ∂z(λ)
∂λ

∣∣∣
λ=0

= p. It remains to show

that ∂y(λ)
∂λ

∣∣∣
λ=0

= q.

IOE 511/Math 562, Section 1, Fall 2007 46

Let A = ∇h(x̄)T ∈ Rl×n. Then A has full row rank. To use the IFT, the elements of x̄ (and d) were
re-arranged so that, after the corresponding re-arrangement of columns of A, we have A = [B;N],
where B is non-singular. Then 0 = Ad = Bq +Np, or q = −B−1Np.

Since (13) holds for all λ (positive and negative) sufficiently close to 0, we have ∂h(x(λ))
∂λ = 0,

or

0 =
∂h(x(λ))

∂λ
= ∇yh(x(λ))T · ∂y(λ)

∂λ
+∇zh(x(λ))T · ∂z(λ)

∂λ

for all λ sufficiently close to 0. In particular, for λ = 0,

0 = ∇yh(x(λ))T
∣∣
λ=0
· ∂y(λ)

∂λ

∣∣∣∣
λ=0

+ ∇zh(x(λ))T
∣∣
λ=0
· ∂z(λ)

∂λ

∣∣∣∣
λ=0

= B · ∂y(λ)

∂λ

∣∣∣∣
λ=0

+Np.

Therefore,
∂y(λ)

∂λ

∣∣∣∣
λ=0

= −B−1Np = q.

Incidentally, this proof technique is quite similar to how the Jacobian of s(z) is derived in the IFT.

Note that Theorem 25 is essentially saying that if a point x̄ is (locally) optimal, there is no direction
d which is an improving direction (i.e., such that f(x̄+λd) < f(x̄) for small λ > 0), and at the same
time a feasible direction (i.e., such that gi(x̄+ λd) ≤ gi(x̄) = 0 for i ∈ I and h(x̄+ λd) = 0), which
makes sense intuitively. However, that the condition in Theorem 25 is somewhat weaker than the
above intuitive explanation due to the fact that F0 and G0 might not contain the complete set of
improving/inward directions, as discussed above.

9.3 Separation of convex sets

We will shortly attempt to reduce the geometric necessary local optimality conditions (F0 ∩ G0 ∩
H0 = ∅) to a statement in terms of the gradients of the objective and constraints functions. For
this we need the mathematical tools developed in this section.

First, some definitions:

• If p 6= 0 is a vector in Rn and α is a scalar, H = {x ∈ Rn : pTx = α} is a hyperplane, and
H+ = {x ∈ Rn : pTx ≥ α}, H− = {x ∈ Rn : pTx ≤ α} are half-spaces.

• Let S and T be two non-empty sets in Rn. A hyperplane H = {x : pTx = α} is said to
separate S and T if pTx ≥ α for all x ∈ S and pTx ≤ α for all x ∈ T , i.e., if S ⊆ H+ and
T ⊆ H−. If, in addition, S ∪ T 6⊂ H, then H is said to properly separate S and T .

• H is said to strictly separate S and T if pTx > α for all x ∈ S and pTx < α for all x ∈ T .

• H is said to strongly separate S and T if for some ε > 0, pTx > α + ε for all x ∈ S and
pTx < α− ε for all x ∈ T .

Theorem 27 (BSS 2.4.4) Let S be a nonempty closed convex set in Rn, and y 6∈ S. Then ∃p 6= 0
and α such that H = {x : pTx = α} strongly separates S and {y}.

To prove the theorem, we need the following result:

IOE 511/Math 562, Section 1, Fall 2007 47

Theorem 28 (BSS 2.4.1) Let S be a nonempty closed convex set in Rn, and y 6∈ S. Then there
exists a unique point x̄ ∈ S with minimum distance from y. Furthermore, x̄ is the minimizing point
if and only if (y − x̄)T (x− x̄) ≤ 0 for all x ∈ S.

Proof: Let x̂ be an arbitrary point in S, and let S̄ = S ∩ {x : ‖x − y‖ ≤ ‖x̂ − y‖}. Then S̄ is a
compact set. Let f(x) = ‖x − y‖. Then f(x) attains its minimum over the set S̄ at some point
x̄ ∈ S̄ (note: x̄ 6= y), and by construction S̄

To show uniqueness, suppose that x′ ∈ S is such that ‖y − x̄‖ = ‖y − x′‖. By convexity of S,
1
2(x̄+ x′) ∈ S. But by the triangle inequality, we get∥∥∥∥y − 1

2
(x̄+ x′)

∥∥∥∥ ≤ 1

2
‖y − x̄‖+

1

2
‖y − x′‖.

If strict inequality holds, we have a contradiction. Therefore, equality holds, and we must have
y− x̄ = λ(y− x′) for some λ. Since ‖y− x̄‖ = ‖y− x′‖, |λ| = 1. If λ = −1, then y = 1

2(x̄+ x′) ∈ S,
contradicting the assumption. Hence, λ = 1, i.e., x′ = x̄.

Finally we need to establish that x̄ is the minimizing point if and only if (y − x̄)T (x − x̄) ≤ 0 for
all x ∈ S. To establish sufficiency, note that for any x ∈ S,

‖x− y‖2 = ‖(x− x̄)− (y − x̄)‖2 = ‖x− x̄‖2 + ‖y − x̄‖2 − 2(x− x̄)T (y − x̄) ≥ ‖x̄− y‖2.

Conversely, assume that x̄ is the minimizing point. For any x ∈ S, λx + (1 − λ)x̄ ∈ S for any
λ ∈ [0, 1]. Also, ‖λx+ (1− λ)x̄− y‖ ≥ ‖x̄− y‖. Thus,

‖x̄− y‖2 ≤ ‖λx+ (1− λ)x̄− y‖2 = λ2‖x− x̄‖2 + 2λ(x− x̄)T (x̄− y) + ‖x̄− y‖2,

or λ2‖x − x̄‖2 ≥ 2λ(y − x̄)T (x − x̄). This implies that (y − x̄)T (x − x̄) ≤ 0 for any x ∈ S, since
otherwise the above expression can be invalidated by choosing λ > 0 small.

Proof of Theorem 27: Let x̄ ∈ S be the point minimizing the distance from the point y to the
set S. Note that x̄ 6= y. Let p = y − x̄ 6= 0, α = 1

2(y − x̄)T (y + x̄), and ε = 1
2‖y − x̄‖

2 > 0. Then
for any x ∈ S, (x− x̄)T (y − x̄) ≤ 0, and so

pTx = (y − x̄)Tx ≤ x̄T (y − x̄) = x̄T (y − x̄) +
1

2
‖y − x̄‖2 − ε = α− ε.

That is, pTx ≤ α− ε for all x ∈ S. On the other hand, pT y = (y − x̄)T y = α + ε, establishing the
result.

Corollary 29 If S is a closed, convex set in Rn, then S is the intersection of all half-spaces that
contain it.

Theorem 30 Let S ⊂ Rn and let C be the intersection of all half-spaces containing S. Then C is
the smallest closed convex set containing S.

Theorem 31 (BSS 2.4.5, Farkas’ Lemma) Exactly one of the following two systems has a so-
lution:

(i) Ax ≤ 0, cTx > 0

(ii) AT y = c, y ≥ 0.

IOE 511/Math 562, Section 1, Fall 2007 48

Proof: First note that both systems cannot have a solution, since then we would have 0 < cTx =
yTAx ≤ 0.

Suppose the system (ii) has no solution. Let S = {x : x = AT y for some y ≥ 0}. Then c 6∈ S. S
is easily seen to be a convex set. Also, it can be shown that S is a closed set (see, for example,
Appendix B.3 of “Nonlinear Programming” by Bertsekas). Therefore, there exist p and α such that
cT p > α and (Ap)T y ≤ α for all y ≥ 0.

If (Ap)i > 0, one could set yi sufficiently large so that (Ap)T y > α, a contradiction. Thus Ap ≤ 0.
Taking y = 0, we also have that α ≥ 0, and so cT p > 0, and p is a solution of (i).

Lemma 32 (Key Lemma) Exactly one of the two following systems has a solution:

(i) Āx < 0, Bx ≤ 0, Hx = 0

(ii) ĀTu+BT v +HTw = 0, u ≥ 0, v ≥ 0, eTu = 1.

Proof: It is easy to show that both (i) and (ii) cannot have a solution. Suppose (i) does not have
a solution. Then the system

Āx+ eθ ≤ 0, θ > 0
Bx ≤ 0
Hx ≤ 0
−Hx ≤ 0

has no solution. This system can be re-written in the form
Ā e
B 0
H 0
−H 0

 · (x
θ

)
≤ 0, (0, . . . , 0, 1) ·

(
x
θ

)
> 0.

From Farkas’ Lemma, there exists a vector (u; v;w1;w2) ≥ 0 such that
Ā e
B 0
H 0
−H 0

T

·

u
v
w1

w2

 =

0
...
0
1

 ,

or ĀTu + BT v + HT (w1 − w2) = 0, eTu = 1. Letting w = w1 − w2 completes the proof of the
lemma.

9.4 First order optimality conditions

9.4.1 “Algebraic” necessary conditions

Theorem 33 (BSS 4.3.2, Fritz John Necessary Conditions) Let x̄ be a feasible solution of
(P). If x̄ is a local minimizer, then there exists (u0, u, v) such that

u0∇f(x̄) +
m∑
i=1

ui∇gi(x̄) +
l∑

i=1

vi∇hi(x̄) = 0,

u0, u ≥ 0, (u0, u, v) 6= 0,

IOE 511/Math 562, Section 1, Fall 2007 49

uigi(x̄) = 0, i = 1, . . . ,m.

(Note that the fist equation can be rewritten as u0∇f(x̄) +∇g(x̄)u+∇h(x̄)v = 0.)

Proof: If the vectors ∇hi(x̄) are linearly dependent, then there exists v 6= 0 such that ∇h(x̄)v = 0.
Setting (u0, u) = 0 establishes the result.

Suppose now that the vectors ∇hi(x̄) are linearly independent. Then Theorem 4.3.1 applies, i.e.,
F0 ∩G0 ∩H0 = ∅. Assume for simplicity that I = {1, . . . , p}. Let

Ā =

∇f(x̄)T

∇g1(x̄)T

...
∇gp(x̄)T

 , H =

 ∇h1(x̄)T

...
∇hl(x̄)T

 .
Then there is no d that satisfies Ād < 0, Hd = 0. From the Key Lemma there exists (u0, u1, . . . , up)
and (v1, . . . , vl) such that

u0∇f(x̄) +

p∑
i=1

ui∇gi(x̄) +

l∑
i=1

vi∇hi(x̄) = 0,

with u0 + u1 + · · · + up = 1 and (u0, u1, . . . , up) ≥ 0. Define up+1, . . . , um = 0. Then (u0, u) ≥ 0,
(u0, u) 6= 0, and for any i, either gi(x̄) = 0, or ui = 0. Finally,

u0∇f(x̄) +∇g(x̄)u+∇h(x̄)v = 0.

Theorem 34 (BSS 4.3.7, KKT Necessary Conditions) Let x̄ be a feasible solution of (P)
and let I = {i : gi(x̄) = 0}. Further, suppose that ∇gi(x̄) for i ∈ I and ∇hi(x̄) for i = 1, . . . , l are
linearly independent. If x̄ is a local minimizer, there exists (u, v) such that

∇f(x̄) +∇g(x̄)u+∇h(x̄)v = 0, (14)

u ≥ 0, uigi(x̄) = 0 i = 1, . . . ,m. (15)

Proof: x̄ must satisfy the Fritz John conditions. If u0 > 0, we can redefine u ← u/u0 and
v ← v/u0. If u0 = 0, it would imply that

∑
i∈I ui∇gi(x̄) +

∑l
i=1 vi∇hi(x̄) = 0, i.e., the above

gradients are linearly dependent. This contradicts the assumptions of the theorem.

A point x̄ that together with some multiplier vectors u and v satisfies conditions (14) and (15) is
referred to as a KKT point.

9.4.2 Generalizations of convexity and first order necessary conditions

Just like for unconstrained optimization, convexity of a problem plays a significant role in our
ability to identify local and global minimizers by first order conditions. In fact, we can consider
somewhat more “relaxed” notion of convexity for this purpose.

Suppose X is a convex set in Rn. A function f : X → R is quasiconvex if ∀x, y ∈ X and
∀λ ∈ [0, 1],

f(λx+ (1− λ)y) ≤ max{f(x), f(y)}.

IOE 511/Math 562, Section 1, Fall 2007 50

If f : X → R, then the level sets of f are the sets

Sα = {x ∈ X : f(x) ≤ α}

for each α ∈ R.

Proposition 35 If f is convex, then f is quasiconvex.

Proof: If f is convex, for λ ∈ [0, 1],

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) ≤ max{f(x), f(y)}.

Theorem 36 A function f is quasiconvex on X if and only if Sα is a convex set for every α ∈ R.

Proof: Suppose that f is quasiconvex. For any given value of α, suppose that x, y ∈ Sα.

Let z = λx + (1 − λ)y for some λ ∈ [0, 1]. Then f(z) ≤ max{f(x), f(y)} ≤ α, so z ∈ Sα, which
shows that Sα is convex for every α.

Conversely, suppose Sα is convex for every α. Let x and y be given, and let α = max{f(x), f(y)},
and hence x, y ∈ Sα. Then for any λ ∈ [0, 1], f(λx+ (1− λ)y) ≤ α = max{f(x), f(y)}. Thus f is
quasi-convex.

Corollary 37 If f is a convex function, its level sets are convex.

Suppose X is a convex set in Rn. A differentiable function f : X → R is pseudoconvex if for every
x, y ∈ X, ∇f(x)T (y − x) ≥ 0 implies f(y) ≥ f(x). (An equivalent way to define a pseudoconvex
function is: if f(y) < f(x), then ∇f(x)T (y − x) < 0.)

Theorem 38
1. A differentiable convex function is pseudoconvex.
2. A pseudoconvex function is quasiconvex.

Proof: To prove the first claim, we use the gradient inequality: if f is convex and differentiable,
then f(y) ≥ f(x) + ∇f(x)T (y − x). Hence, if ∇f(x)T (y − x) ≥ 0, then f(y) ≥ f(x), so f is
pseudoconvex.

To show the second part of the theorem, suppose f is pseudoconvex. Let x, y and λ ∈ [0, 1] be
given, and let z = λx+(1−λ)y. If λ = 0 or λ = 1, then f(z) ≤ max{f(x), f(y)} trivially; therefore,
assume 0 < λ < 1. Let d = y − x.

We can assume without loss of generality that ∇f(z)Td ≥ 0 (otherwise, reverse the roles of x and
y). Then

∇f(z)T (y − z) = ∇f(z)T (λ(y − x)) = λ∇f(z)Td ≥ 0,

so f(z) ≤ f(y) ≤ max{f(x), f(y)}. Thus f is quasiconvex.

By extending the intuition on the relationship between convex and concave functions, a function
f(x) is quasiconcave (pseudoconcave) if its negative (−f(x)) is quasiconvex (pseudoconvex).

Theorem 39 (BSS 4.3.8 - modified, KKT First-order Sufficient Conditions) Let x̄ be a
feasible point of (P), and suppose it satisfies

∇f(x̄) +∇g(x̄)u+∇h(x̄)v = 0,

IOE 511/Math 562, Section 1, Fall 2007 51

u ≥ 0, uigi(x̄) = 0, i = 1, . . . ,m.

If X is a convex set, f(x) is pseudoconvex, gi(x)’s are quasiconvex, and hi(x)’s are linear, then x̄
is a global optimal solution of (P).

Proof: Because each gi is quasiconvex, the level sets

Ci = {x ∈ X : gi(x) ≤ 0}, i = 1, . . . ,m

are convex sets. Also, because each hi is linear, the sets

Di = {x ∈ X : hi(x) = 0}, i = 1, . . . ,m

are convex. Thus, since the intersection of convex sets is convex, the feasible region

S = {x ∈ X : g(x) ≤ 0, h(x) = 0}

is a convex set.

Let x ∈ S be any point different from x̄. Then λx+(1−λ)x̄ is feasible for all λ ∈ (0, 1). Thus

∀i ∈ I, gi(λx+ (1− λ)x̄) = gi(x̄+ λ(x− x̄)) ≤ 0 = gi(x̄)

for any λ ∈ (0, 1), i.e., direction x − x̄ is not an ascent direction8 of gi at x̄, we must have
∇gi(x̄)T (x− x̄) ≤ 0 for all i ∈ I.

Similarly, hi(x̄+ λ(x− x̄)) = 0, and so ∇hi(x̄)T (x− x̄) = 0 for all i = 1, . . . , l.

Thus, from the KKT conditions,

∇f(x̄)T (x− x̄) = − (∇g(x̄)u+∇h(x̄)v)T (x− x̄) ≥ 0,

and by pseudoconvexity, f(x) ≥ f(x̄) for any feasible x.

The program
(P) min f(x)
s.t. g(x) ≤ 0

h(x) = 0
x ∈ X

is a convex program if f , gi, i = 1, . . . ,m are convex functions, hi, i = 1 . . . , l are linear functions,
and X is an open convex set.

Corollary 40 The first order KKT conditions are sufficient for optimality in a convex program.

9.4.3 Constraint qualifications, or when are necessary conditions really necessary?

Recall that the statement of the KKT necessary conditions established above has the form “if x̄ is
a local minimizer of (P) and some requirement for the constraints then KKT conditions must hold
at x̄.” This additional requirement for the constraints that enables us to proceed with the proof of
the KKT conditions is called a constraint qualification.

8An ascent direction is defined analogously to a descent direction: a direction d is an ascent direction of function
f at point x̄ if f(x̄+ λd) > f(x̄) for all λ > 0 sufficiently small.

IOE 511/Math 562, Section 1, Fall 2007 52

We have already established (Theorem 34) that the following is a constraint qualification:
Linear Independence Constraint Qualification The gradients ∇gi(x̄), i ∈ I, ∇hi(x̄), i =
1, . . . , l are linearly independent.

We will now establish two other useful constraint qualifications.

Theorem 41 (Slater’s condition) Suppose the problem (P) satisfies Slater condition, i.e., gi, i =
1, . . . ,m are pseudoconvex, hi, i = 1, . . . , l are linear, and ∇hi(x), i = 1, . . . , l are linearly inde-
pendent, and there exists a point x0 ∈ X which satisfies h(x0) = 0 and g(x0) < 0. Then the KKT
conditions are necessary to characterize an optimal solution.

Proof: Let x̄ be a local minimizer. Fritz-John conditions are necessary for this problem, i.e., there
must exist (u0, u, v) 6= 0 such that (u0, u) ≥ 0 and

u0∇f(x̄) +∇g(x̄)u+∇h(x̄)v = 0, uigi(x̄) = 0.

If u0 > 0, dividing through by u0 demonstrates KKT conditions. Now suppose u0 = 0. Let
d = x0 − x̄. Then for each i ∈ I, 0 = gi(x̄) > gi(x

0), and by pseudo-convexity of gi, ∇gi(x̄)Td < 0.
Also, since h(x) are linear, ∇h(x̄)Td = 0. Thus,

0 = 0Td = (∇g(x̄)u+∇h(x̄)v)Td < 0,

unless ui = 0 for all i ∈ I. Therefore, v 6= 0 and ∇h(x̄)v = 0, violating the linear independence
assumption. This is a contradiction, and so u0 > 0.

The Slater condition here is stated in a less general form than in the textbook. The major difference
is that, as stated in the book, this constraint qualification (as most others) has a “local” flavor, i.e.,
all conditions depend on the particular point x̄ we are considering to be the candidate for optimality.
Therefore, we can’t really verify that the conditions hold until we have a particular point in mind
(and once we have a point, it might very well turn out that it does not satisfy any local constraint
qualification, and so we don’t know if it needs to satisfy the KKT conditions!). It simplifies our task
tremendously if our problem satisfies a global version of some constraint qualification, such as the
Slater condition as stated in Theorem 41. Then we know that every candidate must satisfy KKT
conditions! Of course, a global constraint qualification is a stronger condition than an analogous
local qualification, so fewer problem will satisfy them.

The next constraint qualification is also of a “global” nature:

Theorem 42 (Linear constraints) If all constraints are linear, the KKT conditions are neces-
sary to characterize an optimal solution.

Proof: Our problem is min{f(x) : Ax ≤ b, Mx = g}. Suppose x̄ is a local minimizer. Without
loss of generality, we can partition the constraints Ax ≤ b into groups AIx ≤ bI and AĪx ≤ bĪ
such that AI x̄ = bI and AĪ x̄ < bĪ . Then at x̄, the set {d : Md = 0, AId ≤ 0} is precisely the
set of feasible directions. Thus, in particular, for every d as above, ∇f(x̄)Td ≥ 0, for otherwise
d would be a feasible descent direction at x̄, violating its local optimality. Therefore, the linear
system AI

M
−M

 d ≤ 0, −∇f(x̄)Td > 0

has no solution.

From Farkas’ lemma, there exists (u, v1, v2) ≥ 0 such that ATI u+MT v1−MT v2 = −∇f(x̄). Taking
v = v1 − v2, we obtain the KKT conditions.

IOE 511/Math 562, Section 1, Fall 2007 53

9.5 Second order conditions

To describe the second order conditions for optimality, we will define the following function, known
as the Lagrangian function, or simply the Lagrangian:

L(x, u, v) = f(x) +

m∑
i=1

uigi(x) +

l∑
i=1

vihi(x).

Using the Lagrangian, we can, for example, re-write the gradient conditions of the KKT necessary
conditions as follows:

∇xL(x̄, u, v) = 0, (16)

since ∇xL(x, u, v) = ∇f(x) +∇g(x)u+∇h(x)v.

Also, note that ∇2
xxL(x, u, v) = ∇2f(x) +

∑m
i=1 ui∇2gi(x) +

∑l
i=1 vi∇2hi(x). Here we use the

standard notation: ∇2q(x) denotes the Hessian of the function q(x), and ∇2
xxL(x, u, v) denotes the

submatrix of the Hessian of L(x, u, v) corresponding to the partial derivatives with respect to the
x variables only.

Theorem 43 (BSS 4.4.3, KKT second order necessary conditions) Suppose x̄ is a local min-
imizer of (P), and ∇gi(x̄), i ∈ I and ∇hi(x̄), i = 1, . . . , l are linearly independent. Then x̄ is a
KKT point, and, in addition,

dT∇2
xxL(x̄, u, v)d ≥ 0

for all d 6= 0 such that ∇gi(x̄)Td ≤ 0, i ∈ I, ∇hi(x̄)Td = 0, i = 1 . . . , l.

Theorem 44 (BSS 4.4.2, KKT second order sufficient conditions) Suppose the point x̄ ∈
S together with multipliers (u, v) satisfies the first order KKT conditions. Let I+ = {i ∈ I : ui > 0}
and I0 = {i ∈ I : ui = 0}. If in addition,

dT∇2
xxL(x̄, u, v)d > 0

for all d 6= 0 such that ∇gi(x̄)Td ≤ 0, i ∈ I0, ∇gi(x̄)Td = 0, i ∈ I+, ∇hi(x̄)Td = 0, i = 1 . . . , l.
Then x̄ is a (strict) local minimizer.

IOE 511/Math 562, Section 1, Fall 2007 54

10 Linearly constrained problems and quadratic programming

10.1 The gradient projection method for linear equality constrained problems

10.1.1 Optimization over linear equality constraints

Suppose we want to solve
(P) min f(x)

s.t. Ax = b.

Assume that the problem is feasible and hence, without loss of generality, that matrix A has full
row rank. The KKT conditions are necessary for this problem (because it satisfies a number of
constraint qualifications) and are as follows:

Ax̄ = b
∇f(x̄) +AT v̄ = 0.

We therefore wish to find such a KKT point (x̄, v̄).

Suppose we are at an iterate x where Ax = b, i.e., x is a feasible point. Just like in the steepest
descent algorithm, we wish to find a direction d which is a direction of steepest descent of the
objective function, but in order to stay in the feasible region, we also need to have Ad = 0.
Therefore, the direction-finding problem takes form

min ∇f(x)Td
s.t. dT Id ≤ 1

Ad = 0.

The first constraint of the problem requires that the search direction d has length 1 in the Euclidean
norm. We can, however, adapt a more general approach and replace the Euclidean norm ‖d‖ =√
dT Id =

√
dTd with a more general norm ‖d‖Q =

√
dTQd, where Q is an arbitrary symmetric

positive definite matrix. Using this general norm in the direction-finding problem, we can state the
projected steepest descent algorithm:

Step 0 Given x0, set k ← 0

Step 1 Solve the direction-finding problem defined at point xk:

(DFPxk) dk = argmin ∇f(xk)
Td

s.t. dTQd ≤ 1
Ad = 0.

If ∇f(xk)
Tdk = 0, stop. xk is a KKT point.

Step 2 Choose stepsize λk by performing an exact (or inexact) line search.

Step 3 Set xk+1 ← xk + λkdk, k ← k + 1. Go to Step 1.

Notice that if Q = I and the equality constraints are absent, the above is just the steepest descent
algorithm. The choice of name “projected” steepest descent may not be apparent at this point,
but will be clarified later.

IOE 511/Math 562, Section 1, Fall 2007 55

10.1.2 Analysis of (DFP)

Note that (DFPxk) above is a convex program, and d = 0 is a Slater point. Therefore, the KKT
conditions are necessary and sufficient for optimality. These conditions are (we omit the superscript
k for simplicity):

Ad = 0

dTQd ≤ 1

∇f(x) +ATπ + 2βQd = 0

β ≥ 0

β(1− dTQd) = 0.

(17)

Let d solve these equations together with multipliers β and π.

Proposition 45 x is a KKT point of (P) if and only if ∇f(x)Td = 0, where d is a KKT point of
(DFPx).

Proof: First, suppose x is a KKT point of (P). Then there exists v such that

Ax = b, ∇f(x) +AT v = 0.

Let d be any KKT point of (DFPx) together with multipliers π and β. Then, in particular, Ad = 0.
Therefore,

∇f(x)Td = −(AT v)Td = vTAd = 0.

To prove the converse, suppose that d (together with multipliers π and β) is a KKT point of
(DFPx), and ∇f(x)Td = 0. Then

0 = (∇f(x) +ATπ + 2βQd)Td = ∇f(x)Td+ πTAd+ 2βdTQd = 2β,

and so β = 0. Therefore,
Ax = b and ∇f(x) +ATπ = 0,

i.e., the point x (together with multiplier vector π) is a KKT point of (P).

Proposition 46 x is a KKT point of (P) if and only if β = 0, where β is the appropriate KKT
multiplier of (DFPx).

Proposition 47 If x is not a KKT point of (P), then d is a descent direction, where d is the KKT
point of (DFPx).

Proposition 48 The projected steepest descent algorithm has the same convergence properties and
the same linear convergence as the steepest descent algorithm. Under the same conditions as in the
steepest descent algorithm, the iterates converge to a KKT point of (P), and the convergence rate
is linear, with a convergence constant that is bounded in terms of eigenvalues identically as in the
steepest descent algorithm.

10.1.3 Solving (DFPx)

Approach 1 to solving DFP: solving linear equations

IOE 511/Math 562, Section 1, Fall 2007 56

Create the system of linear equations:

Qd̃ +AT π̃ = −∇f(x)

Ad̃ = 0
(18)

and solve this linear system for (d̃, π̃) by any method at your disposal.

If Qd̃ = 0, then ∇f(x) +AT π̃ = 0 and so x is a KKT point of (P).

If Qd̃ 6= 0, then rescale the solution as follows:

d =
d̃√
d̃TQd̃

,

π = π̃,

β =
1

2

√
d̃TQd̃

.

Proposition 49 (d, π, β) defined above satisfy (17).

Note that the rescaling step is not necessary in practice, since we use a line-search.

Approach 2 to solving DFP: Formulae

Let
PQ = Q−1 −Q−1AT (AQ−1AT)−1AQ−1

β =

√
(∇f(x))TPQ(∇f(x))

2

π = −(AQ−1AT)−1AQ−1(∇f(x))

If β > 0, let

d =
−PQ∇f(x)√
∇f(x)TPQ∇f(x)

.

If β = 0, let d̄ = 0.

Proposition 50 PQ is symmetric and positive semi-definite. Hence β is well-defined.

Proposition 51 (d, π, β) defined above satisfy (17).

10.1.4 The Variable Metric Method

In the projected steepest descent algorithm, the direction d must be contained in the ellipsoid
EQ = {d ∈ Rn : dTQd ≤ 1}, where Q is fixed for all iterations. In a variable metric method, Q can
vary at every iteration. The variable metric algorithm is:

Step 0 Given x0, set k ← 0

IOE 511/Math 562, Section 1, Fall 2007 57

Step 1 Choose a symmetric positive definite matrix Q. (Perhaps Q = Q(x̄), i.e., the choice of Q
may depend on the current point.) Solve the direction-finding problem defined at point xk:

(DFPxk) dk = argmin ∇f(xk)
Td

s.t. dTQd ≤ 1
Ad = 0.

If ∇f(xk)
Tdk = 0, stop. xk is a KKT point.

Step 2 Choose stepsize λk by performing an exact (or inexact) line search.

Step 3 Set xk+1 ← xk + λkdk, k ← k + 1. Go to Step 1.

All properties of the projected steepest descent algorithm still hold here.

Some strategies for choosing Q at each iteration are:

• Q = I

• Q is a given matrix held constant over all iterations

• Q = H(xk) where H(x) is the Hessian of f(x). It is easy to show that in this case, the variable
metric algorithm is equivalent to Newton’s method with a line-search, see the proposition
below.

• Q = H(xk) + δI, where δ is chosen to be large for early iterations, but δ is chosen to be small
for later iterations. One can think of this strategy as approximating the projected steepest
descent algorithm in early iterations, followed by approximating Newton’s method in later
iterations.

Proposition 52 Suppose that Q = H(xk) in the variable metric algorithm. Then the direction d̄
in the variable metric method is a positive scalar times the Newton direction.

Proof: If Q = H(xk), then the vector d̄ of the variable metric method is the optimal solution of
(DFPxk):

(DFPxk) d̄ = argmin ∇f(xk)
Td

s.t. Ad = 0
dTH(xk)d ≤ 1.

The Newton direction d̃ for (P) at the point xk is the solution of the following problem:

(NDPxk) : d̂ = argmin ∇f(xk)
Td+ 1

2d
TH(xk)d

s.t. Ad = 0.
(19)

If you write down the KKT conditions for each of these two problems, you then can easily verify
that d̄ = γd̂ for some scalar γ > 0.

10.2 Linear inequality constraints: manifold suboptimization methods

Suppose we want to solve
(P) min f(x)

s.t. Ax ≤ b.
The problem might also have linear equality constraints, but we will assume we can handle them
in the spirit of the previous subsection.

IOE 511/Math 562, Section 1, Fall 2007 58

The algorithm described here9 can be viewed as a variant of gradient projection method above;
the difference is that here the search direction needs to be in the null space of active constraints
rather than the entire constraint set. Once the set of constraints that are active at a solution is
identified, the method will be identical to the algorithm for equality-constrained problems. At the
early phase of the algorithm we maintain the set of active constraints which is our current “guess” of
the “correct” set of active constraints, and the algorithm proceeds essentially by searching through
a sequence of manifolds, each defined by a set of constraints (the successive manifolds typically
differ by one constraint).10

We will denote by A(x) the set of indices of active constraints at a feasible point x. We will assume
for simplicity that the set of vectors {ai : i ∈ A(x)} is linearly independent for every feasible point
x.

A typical iteration of the method proceeds as follows: let xk be an iterate. Solve the direction
finding problem at xk:

dk = argmin ∇f(xk)
Td+ 1

2d
THkd

s.t. aTi d = 0, i ∈ A(xk)
(20)

(here Hk is some symmetric positive definite matrix). If a non-zero descent direction is found, i.e.,
∇f(xk)

Tdk < 0, the next iterate is given by xk+1 = xk + λkdk, where λk is chosen by some rule
from the range {λ : A(xk + λdk) ≤ b}.

If no feasible descent direction can be found by solving the problem (20), there are two possibilities:
either the current point xk is optimal over the entire set of constraints, and the algorithm is
terminated, or the current manifold needs to be updated.

We now analyze the problem (20) in further detail. First, note that since d = 0 is feasible, we must
have

∇f(xk)
Tdk +

1

2
(dk)

THkdk ≤ 0.

If dk 6= 0, then the above equation, together with positive-definiteness of Hk implies that dk is a
feasible descent direction.

What happens if dk = 0? The optimal solution of the direction-finding problem can be computed
from the KKT conditions:

dk = −(Hk)
−1(∇f(xk) + (Ak)

T v),

where v is the KKT multiplier

v = −(Ak(Hk)
−1Ak)

−1Ak(Hk)
−1∇f(xk)

(here Ak is the submatrix of A consisting of rows of active constraints). If dk = 0, then we
have

∇f(xk) +
∑

i∈A(xk)

viai = 0

If all vi ≥ 0 : i ∈ A(xk), then the current point is a KKT point for the problem (P), and the
algorithm can be terminated. Suppose, on the other hand, that vj < 0 for some j ∈ A(xk). We

9Based on Bertsekas, Section 2.5
10A manifold is formally defined as a topological space that is locally Euclidean. Here we are dealing with spaces

that are intersections of several hyperplanes, which are, in a sense, the simplest kinds of manifolds.

IOE 511/Math 562, Section 1, Fall 2007 59

proceed by deleting the constraint aTj x = bj from the manifold of active constraints and solving
the new direction-finding problem

d̄k = argmin ∇f(xk)
Td+ 1

2d
THkd

s.t. aTi d = 0 i ∈ A(xk), i 6= j.

Proposition 53 d̄k is a feasible descent direction.

Proof: First we show that d̄k 6= 0. If d̄k = 0, then

∇f(xk) +
∑

i∈A(xk), i 6=j

v̄iai = 0

for some vector of multipliers v̄. Then∑
i∈A(xk), i 6=j

(vi − v̄i)ai + vjaj = 0,

which contradicts the linear independence assumption, since vj 6= 0. Therefore d̄k 6= 0, and hence
is a descent direction.

To show that d̄k is a feasible direction, we need to show that aTj d̄k ≤ 0. We have:

0 = (∇f(xk) +
∑

i∈A(xk)

viai)
T d̄k = ∇f(xk)

T d̄k +
∑

i∈A(xk)

via
T
i d̄k = ∇f(xk)

T d̄k + vja
T
j d̄k < vja

T
j d̄k.

Since vj < 0, aTj d̄k < 0. This implies in particular that once a step in direction dk is taken, the

constraint aTj x ≤ bj will no longer be active.

The above discussion provides a general idea of the manifold suboptimization methods. Note that
the initial stage of the algorithm will require at least as many manifold changes as the number of
constraints whose status differs at the initial point and the solution. Therefore these methods are
most efficient when the number of inequality constraints is relatively small.

10.3 Quadratic Programming

Quadratic programming (QP) problems involve minimization of a quadratic function 1
2x

TQx+qTx
subject to linear equality and inequality constraints. The two algorithms above can be easily
re-stated for the case of quadratic programming.

In general, if the matrix Q is positive semidefinite, then the corresponding QP is convex and its op-
timal solutions are completely characterized by the KKT conditions. Therefore, for such problems
the algorithms described above converge to an optimal solution. The computation involved in solv-
ing convex QP problems is often simplified. For example, if Q is positive definite, in the projected
Newton’s method outlined above, matrix PQ needs to be computed only once, since the Hessian of
the function f(x) remains constant. Also, in the manifold suboptimization method, it makes sense
to use Hk = Q (provided that Q is positive definite), also simplifying the computation.

If, however, the matrix Q is not positive semidefinite, QP can potentially have many local minimiz-
ers, and the algorithms applied to such problems will typically find only a local minimizer.

IOE 511/Math 562, Section 1, Fall 2007 60

11 Introduction to penalty methods for constrained optimization

Consider the constrained optimization problem (P):

(P) min f(x)
s.t. gi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , l
x ∈ X ⊆ Rn,

whose feasible region we denote by S = {x ∈ X : gi(x) ≤ 0, i = 1, . . . ,m, hi(x) = 0, i = 1, . . . , l}.
Here, the set X represents either an open set, or a set defined by constraints that can be easily
incorporated into the optimization (e.g., linear equality constraints).

Penalty methods are designed to solve (P) by instead solving a specially constructed unconstrained
optimization problem, or a sequence of such problems. In particular the feasible region of (P) is
expanded from S to all of X, but a large cost or “penalty” is added to the objective function for
points that lie outside of the original feasible region S.

We will often write g(x) = (g1(x), . . . , gm(x))T and h(x) = (h1(x), . . . , hl(x))T for convenience.

Definition: A function p(x) : Rn → R is called a penalty function for (P) if p(x) satisfies:

• p(x) = 0 if g(x) ≤ 0, h(x) = 0 and

• p(x) > 0 if g(x) 6≤ 0 or h(x) 6= 0.

Penalty functions are typically defined by

p(x) =
m∑
i=1

φ(gi(x)) +
l∑

i=1

ψ(hi(x)), (21)

where

• φ(y) = 0 if y ≤ 0 and φ(y) > 0 if y > 0

• ψ(y) = 0 if y = 0 and ψ(y) > 0 if y 6= 0,

although more general functions satisfying the definition can conceptually be used.

Example:

p(x) =

m∑
i=1

(max{0, gi(x)})2 +
l∑

i=1

hi(x)2.

We then consider solving the following penalty program:

P(c) : min f(x) + cp(x)
s.t. x ∈ X

for an increasing sequence of constants c as c→ +∞. Note that in the program P(c) we are assigning
a penalty to the violated constraints. The scalar quantity c is called the penalty parameter.

Let ck ≥ 0, k = 1, . . . ,∞, be a sequence of penalty parameters that satisfies ck+1 > ck for all k
and limk→∞ ck = +∞. Let q(c, x) = f(x) + cp(x), and let xk be the exact solution to the program
P(ck), and let x? denote any optimal solution of (P).

The following Lemma presents some basic properties of penalty methods:

IOE 511/Math 562, Section 1, Fall 2007 61

Lemma 54 (Penalty Lemma, 9.2.1)

1. q(ck, xk) ≤ q(ck+1, xk+1)

2. p(xk) ≥ p(xk+1)

3. f(xk) ≤ f(xk+1)

4. f(x?) ≥ q(ck, xk) ≥ f(xk)

Proof:

1. We have

q(ck+1, xk+1) = f(xk+1) + ck+1p(xk+1) ≥ f(xk+1) + ckp(xk+1) ≥ f(xk) + ckp(xk) = q(ck, xk)

2.
f(xk) + ckp(xk) ≤ f(xk+1) + ckp(xk+1)

and
f(xk+1) + ck+1p(xk+1) ≤ f(xk) + ck+1p(xk)

Thus (ck+1 − ck)p(xk) ≥ (ck+1 − ck)p(xk+1), whereby p(xk) ≥ p(xk+1).

3. From the proof of (1.),

f(xk+1) + ckp(xk+1) ≥ f(xk) + ckp(xk).

But p(xk) ≥ p(xk+1), which implies that f(xk+1) ≥ f(xk).

4. f(xk) ≤ f(xk) + ckp(xk) ≤ f(x?) + ckp(x
?) = f(x?).

The next result concerns convergence of the penalty method.

Theorem 55 (Penalty Convergence Theorem, 9.2.2) Suppose that S 6= ∅ and f(x), g(x),
h(x), and p(x) are continuous functions. Let {xk}, k = 1, . . . ,∞, be a sequence of solutions to
P (ck), and suppose the sequence {xk} is contained in a compact set. Then any limit point x̄ of
{xk} solves (P).

Proof: Let x̄ be a limit point of {xk}. From the continuity of the functions involved, limk→∞ f(xk) =
f(x̄). Also, from the Penalty Lemma,

q? = lim
k→∞

q(ck, xk) ≤ f(x?).

Thus
lim
k→∞

ckp(xk) = lim
k→∞

[q(ck, xk)− f(xk)] = q? − f(x̄).

But ck →∞, which implies from the above that

lim
k→∞

p(xk) = 0.

Therefore, from the continuity of p(x), g(x) and h(x), p(x̄) = 0, and so g(x̄) ≤ 0 and h(x̄) = 0,
that is, x̄ is a feasible solution of (P). Finally, from the Penalty Lemma, f(xk) ≤ f(x?) for all k,
and so f(x̄) ≤ f(x?), which implies that x̄ is an optimal solution of (P).

IOE 511/Math 562, Section 1, Fall 2007 62

An often-used class of penalty functions is:

p(x) =
m∑
i=1

[max{0, gi(x)}]q +
l∑

i=1

|hi(x)|q, where q ≥ 1. (22)

We note the following:

• If q = 1, p(x) in (22) is called the “linear penalty function.” This function may not be
differentiable at points where gi(x) = 0 or hi(x) = 0 for some i.

• Setting q = 2 is the most common form of (22) that is used in practice, and is called the
“quadratic penalty function” (for obvious reasons). If we denote

g+(x) = (max{0, gi(x)}, . . . ,max{0, gm(x)})T ,

then the quadratic penalty function can be written as

p(x) = (g+(x))T (g+(x)) + h(x)Th(x).

11.1 Karush-Kuhn-Tucker multipliers in penalty methods

Suppose the penalty function p(x) is defined as

p(x) =
m∑
i=1

φ(gi(x)) +
l∑

i=1

ψ(hi(x)),

where φ(y) and ψ(y) are as above.

Note that p(x) might not be continuously differentiable, since the functions g+
i (x) are not differ-

entiable at points x where gi(x) = 0. However, if we assume that the functions φ(y) and ψ(y) are
continuously differentiable and

φ′(0) = 0, (23)

then p(x) is differentiable whenever the functions g(x), and h(x) are differentiable, and we can
write

∇p(x) =
m∑
i=1

φ′(gi(x))∇gi(x) +
l∑

i=1

ψ′(hi(x))∇hi(x). (24)

Now let xk solve P (ck). Then xk will satisfy

∇f(xk) + ck∇p(xk) = 0,

that is,

∇f(xk) + ck

m∑
i=1

φ′(gi(xk))∇gi(xk) + ck

l∑
i=1

ψ′(hi(xk))∇hi(xk) = 0.

Let us define
[uk]i = ckφ

′(gi(xk)), [vk]i = ckψ
′(hi(xk)). (25)

Then

∇f(xk) +
m∑
i=1

[uk]i∇gi(xk) +
l∑

i=1

[vk]i∇hi(xk) = 0,

and so we can interpret (uk, vk) as a sort of vector of Karush-Kuhn-Tucker multipliers. In fact, we
have:

IOE 511/Math 562, Section 1, Fall 2007 63

Lemma 56 Suppose φ(y) and ψ(y) are continuously differentiable and satisfy (23), and that f(x),
g(x), and h(x) are differentiable. Let (uk, vk) be defined by (25). Then if xk → x̄, and x̄ satisfies
the linear independence condition for gradient vectors of active constraints, then (uk, vk)→ (ū, v̄),
where (ū, v̄) is a vector of Karush-Kuhn-Tucker multipliers for the optimal solution x̄ of (P).

Proof: From the Penalty Convergence Theorem, x̄ is an optimal solution of (P). Let I = {i | gi(x̄) =
0} and N = {i : gi(x̄) < 0}. For i ∈ N , gi(xk) < 0 for all k sufficiently large, so [uk]i = 0 for all k
sufficiently large, whereby ūi = 0 for i ∈ N .

From (25) and the definition of a penalty function, it follows that [uk]i ≥ 0 for i ∈ I, for all k
sufficiently large.

Suppose (uk, vk) → (ū, v̄) as k → ∞. Then ūi = 0 for i ∈ N . From the continuity of all functions
involved,

∇f(xk) +

m∑
i=1

[uk]i∇gi(xk) +

l∑
i=1

[vk]i∇hi(xk) = 0

implies

∇f(x̄) +
m∑
i=1

ūi∇gi(x̄) +
l∑

i=1

v̄i∇hi(x̄) = 0.

From the above remarks, we also have ū ≥ 0 and ūi = 0 for all i ∈ N . Thus (ū, v̄) is a vector
of Karush-Kuhn-Tucker multipliers. It therefore remains to show that (uk, vk) → (ū, v̄) for some
unique (ū, v̄).

Suppose {(uk, vk)}∞k=1 has no accumulation point. Then ‖(uk, vk)‖ → ∞. But then define

(λk, µk) =
(uk, vk)

‖(uk, vk)‖
,

and then ‖(λk, µk)‖ = 1 for all k, and so the sequence {(λk, µk)}∞k=1 has some accumulation point
(λ̄, µ̄). For all i ∈ N , [λk]i = 0 for k large, whereby λ̄i = 0 for i ∈ N , and

∑
i∈I

[λk]i∇gi(xk) +

l∑
i=1

[µk]i∇hi(xk) =

m∑
i=1

[λk]i∇gi(xk) +

l∑
i=1

[µk]i∇hi(xk)

=
m∑
i=1

(
[uk]i

‖(uk, vk)‖

)
∇gi(xk) +

l∑
i=1

(
[vk]i

‖(uk, vk)‖

)
∇hi(xk)

=
−∇f(xk)

‖(uk, vk)‖

for k large. As k →∞, we have xk → x̄, (λk, µk)→ (λ̄, µ̄), and ‖(uk, vk)‖ → ∞, and so the above
becomes ∑

i∈I
λ̄i∇gi(x̄) +

l∑
i=1

µ̄i∇hi(x̄) = 0,

and ‖(λ̄, µ̄)‖ = 1, which violates the linear independence condition. Therefore {(uk, vk)} is a
bounded sequence, and so has at least one accumulation point.

IOE 511/Math 562, Section 1, Fall 2007 64

Now suppose that {(uk, vk)} has two accumulation points, (ũ, ṽ) and (ū, v̄). Note ūi = 0 and ũi = 0
for i ∈ N , and so

∑
i∈I

ūi∇gi(x̄) +

l∑
i=1

v̄i∇hi(x̄) = −∇f(x̄) =
∑
i∈I

ũi∇gi(x̄) +

l∑
i=1

ṽi∇hi(x̄),

so that ∑
i∈I

(ūi − ũi)∇gi(x̄) +
l∑

i=1

(v̄i − ṽi)∇hi(x̄) = 0.

But by the linear independence condition, ūi− ũi = 0 for all i ∈ I, and v̄− ṽ = 0. This then implies
that (ū, v̄) = (ũ, ṽ).

Remark. The quadratic penalty function satisfies the condition (23), but that the linear penalty
function does not satisfy (23).

11.2 Exact penalty methods

The idea in an exact penalty method is to choose a penalty function p(x) and a constant c so that
the optimal solution x̃ of P(c) is also an optimal solution of the original problem (P).

Theorem 57 (9.3.1) Suppose (P) is a convex program for which the Karush-Kuhn-Tucker condi-
tions are necessary.

Suppose that

p(x) :=
m∑
i=1

gi(x)+ +
l∑

i=1

|hi(x)|.

Then as long as c is chosen sufficiently large, the sets of optimal solutions of P (c) and (P) coincide.
In fact, it suffices to choose c > max{u?i , i = 1, . . . ,m; |v?i |, i = 1, . . . , l}, where (u?, v?) is a vector
of Karush-Kuhn-Tucker multipliers.

IOE 511/Math 562, Section 1, Fall 2007 65

Proof: Suppose x̂ solves (P). For any x ∈ Rn we have:

q(c, x) = f(x) + c

(
m∑
i=1

gi(x)+ +

l∑
i=1

|hi(x)|

)

≥ f(x) +

m∑
i=1

u?i gi(x)+ +

l∑
i=1

|vihi(x)|

≥ f(x) +
m∑
i=1

u?i gi(x) +
l∑

i=1

vihi(x)

≥ f(x) +
m∑
i=1

u?i (gi(x̂) +∇gi(x̂)T (x− x̂)) +
l∑

i=1

v?i (hi(x̂) +∇hi(x̂)T (x− x̂))

= f(x) +

(
m∑
i=1

u?i∇gi(x̂) +
l∑

i=1

v?i∇hi(x̂)

)T
(x− x̂)

= f(x)−∇f(x̂)T (x− x̂) ≥ f(x̂)

= f(x̂) + c

(
m∑
i=1

gi(x̂)+ +

l∑
i=1

|hi(x̂)|

)
= q(c, x̂).

Thus q(c, x̂) ≤ q(c, x) for all x, and therefore x̂ solves P (c).

Next suppose that x̄ solves P (c). Then if x̂ solves (P), we have:

f(x̄) + c

(
m∑
i=1

gi(x̄)+ +
l∑

i=1

|hi(x̄)|

)
≤ f(x̂) + c

(
m∑
i=1

gi(x̂)+ +
l∑

i=1

|hi(x̂)|

)
= f(x̂),

and so

f(x̄) ≤ f(x̂)− c

(
m∑
i=1

gi(x̄)+ +

l∑
i=1

|hi(x̄)|

)
. (26)

However, if x̄ is not feasible for (P), then

f(x̄) ≥ f(x̂) +∇f(x̂)T (x̄− x̂)

= f(x̂)−
m∑
i=1

u?i∇gi(x̂)T (x̄− x̂)−
l∑

i=1

v?i∇hi(x̂)T (x̄− x̂)

≥ f(x̂) +
m∑
i=1

u?i (gi(x̂)− gi(x̄)) +
l∑

i=1

v?i (hi(x̂)− hi(x̄))

= f(x̂)−
m∑
i=1

u?i gi(x̄)−
l∑

i=1

v?i hi(x̄)

> f(x̂)− c

(
m∑
i=1

gi(x̄)+ +

l∑
i=1

|hi(x̄)|

)
,

which contradicts (26). Thus x̄ is feasible for (P). That being the case,

f(x̄) ≤ f(x̂)− c

(
m∑
i=1

gi(x̄)+ +
l∑

i=1

|hi(x)|

)
= f(x̂)

IOE 511/Math 562, Section 1, Fall 2007 66

from (26), and so x̄ solves (P).

11.3 Augmented Lagrangian penalty function

As we have seen in the above discussion, most “smooth” penalty functions (such as quadratic
penalty function) never generate exact solutions to the constrained minimization problem. There-
fore, we would need to solve the (penalized) unconstrained problems with very large values of the
constant c in order to obtain solutions that are close to being feasible and optimal. (In theory, we
need to let c→∞ to obtain a solution.) This is unfortunate, since the unconstrained optimization
problems one encounters in implementing penalty methods tend to become ill-conditioned when c
increases, and therefore, it will be hard to solve each of the unconstrained subproblems required by
the algorithm.

Alternatively, one could employ an exact penalty method, i.e., a method that guarantees termi-
nation at an optimal solution provided that the value of c is sufficiently large (but finite). As
we have established, linear penalty function is an exact penalty function; unfortunately, it is not
differentiable at points at the boundary of the feasible region, and therefore poses difficulties in
solving corresponding unconstrained problems. Below we attempt to investigate the existence of
differentiable exact penalty methods.

For simplicity we will consider problems (P) with only equality constraints (there are techniques that
extend the discussion below to more general problems). Consider the following penalty function,
known as the augmented Lagrangian penalty function or the multiplier penalty function:

LALAG(x, v) = f(x) +

l∑
i=1

vihi(x) + c

l∑
i=1

hi(x)2,

where v ∈ Rl is some vector of multipliers, that can be either kept constant or updated as we
proceed with the penalty algorithm. (Compare this to the usual Lagrangian function L(x, v) =
f(x) +

∑l
i=1 vihi(x).) The usage of this function as a penalty function can be partially motivated

by the following observation: suppose that x̄ is the optimal solution of (P), and v̄ is the vector
of corresponding multipliers. Taking the (partial) gradient of the function LALAG at (x̄, v̄), we
obtain

∇xLALAG(x̄, v̄) =

[
∇f(x̄) +

l∑
i=1

v̄i∇hi(x̄)

]
+ 2c

l∑
i=1

hi(x̄)∇hi(x̄) = 0

for all values of c (this is not necessarily true for the simple quadratic penalty function!). Hence,
if the vector of multipliers v̄ is known, one can hope that under some regularity assumptions, the
point x̄ is the local minimizer of LALAG(x, v̄) for large (but finite) values of c. Indeed, we have the
following

Theorem 58 (9.3.3) Let (x̄, v̄) be a KKT solution of (P) satisfying the second order sufficiency
conditions for a local minimum, i.e.,

dT∇2
xxL(x̄, v)d > 0

for all d 6= 0 such that ∇hi(x̄)Td = 0, i = 1 . . . , l. Then there exists c̄ such that ∀c ≥ c̄, the function
LALAG(x, v̄) achieves a strict local minimum at x̄.

In particular, if f is convex and h is linear, then any minimizing solution x̄ for (P) also minimizes
LALAG(x, v̄) for all c ≥ 0.

IOE 511/Math 562, Section 1, Fall 2007 67

In practice, of course, the exact values of the KKT multipliers are not known in advance. Therefore,
to make use of the above result, one attempts to estimate the multipliers by updating the vector
vk after solving each (or some) unconstrained minimizations of LALAG. The outline of such an
algorithm is as follows:

Initialization Select the initial multipliers v0 and penalty weight c0 > 0. Set k ← 0

Iteration k, inner loop Solve the unconstrained problem to minimize LALAG(x, vk) and let xk
denote the optimal solution obtained. If termination criteria are satisfied, stop.

Iteration k, outer loop Obtain the updated multipliers vk+1 according to appropriate formulas,
increase k, repeat iteration.

As you can see, the above description is extremely generic. In particular, the multipliers can be
updated in numerous ways. Some of them are:

• Constant: Keep the multipliers constant. This version of the method is not significantly
different from the usual quadratic penalty method.

• Method of multipliers: Let
vk+1 = vk + 2ckh(xk).

The rationale for this method is provided by the following fact. Suppose the multipliers vk in
the augmented Lagrangian function are updated according to any rule such that the sequence
{vk} is bounded. Suppose further that ck → +∞, and xk → x?, where x? is a KKT point
with multipliers v? (of course, we need some regularity conditions to hold for this to happen).
Then

vk + 2ckh(xk)→ v?

(this result is very similar to Lemma 56).

• Other multiplier update methods – second order, exponential, etc.

The study of convergence of such methods, and especially rates of convergence is fairly complicated.
The text by Bertsekas contains some fairly detailed analysis and provides many references.

Augmented Lagrangian methods are implemented in several popular optimization codes.

IOE 511/Math 562, Section 1, Fall 2007 68

12 Successive quadratic programming (SQP)

In this section we will describe some basic ideas of the Sequential Quadratic Programming (SQP)
method for solving nonlinearly constrained optimization problems.11 The problem we will consider
is, as usual,

(P) min f(x)
s.t. g(x) ≤ 0

h(x) = 0,

where at least one of the constraints is nonlinear.

One of the ways to motivate SQP is to employ Newton’s (or quasi-Newton) method to directly solve
the KKT conditions for the problem (P). An alternative way to view the basic idea of SQP it to
model (P) at a given approximate solution, say xk, by a quadratic programming (QP) subproblem,
and then use the solution to the subproblem to construct a better approximation xk+1. This process
is iterated to create a sequence of approximations that, it is hoped, will converge to a solution x?

of (P). We will attempt to demonstrate in this presentation that SQP methods can be viewed as
the natural extension of Newton (or quasi-Newton) methods to constrained optimization setting,
as mentioned above.

It should be noted that in general SQP is not a feasible-point method, i.e., its iterates need not be
feasible (although the method can be easily modified so that if any linear constraints are present,
they are always satisfied).

12.1 The basic SQP method

As usual, we define the Lagrangian function associated with problem (P) by

L(x, u, v) = f(x) + g(x)Tu+ h(x)T v.

For any feasible point x, let G(x) denote the Jacobian of the function corresponding to active
constraints (i.e., the rows of G(x) are the (transposed) gradients of all hi(x)’s and active gi(x)’s).
We will denote by x? any particular local solution. We assume that the following conditions hold
for any such solution:

A1 The first order necessary conditions are satisfied, i.e., there exists an optimal multiplier vector
(u?, v?) that together with x? satisfies first order KKT conditions.

A2 G(x?) has full row rank.

A3 Strict complementarity holds at x? (i.e., if gi(x
?) = 0, then u?i > 0).

A4 The Hessian of the Lagrangian function with respect to x is p.d. on the null space of G(x?)
(this is the second order sufficient condition for a strict local minimum).

At a current iterate xk, we seek to (locally) approximate the problem (P) by a quadratic subproblem,
i.e., an optimization problem with a quadratic objective function and linear constraints. We thus

11This discussion is based primarily on the review paper “Sequential Quadratic Programming” by Paul T. Boggs
and Jon W. Tolle, Acta Numerica, 1995, 1–51.

IOE 511/Math 562, Section 1, Fall 2007 69

will construct the subproblem by linearizing the constraints of (P) around xk:

min (rk)
Tdx + 1

2d
T
xBkdx

dx
s.t. ∇g(xk)

Tdx + g(xk) ≤ 0,
∇h(xk)

Tdx + h(xk) = 0

where dx = x − xk. It remains to specify the vector and symmetric matrix to form the objective
function. The most obvious choice would be the local quadratic approximation to f at xk. However,
the following choice allows us to take the nonlinearity of the constraints into account. Observe that
conditions A1–A4 imply that x? is a local minimizer of the problem minx{L(x, u?, v?) : g(x) ≤
0, h(x) = 0}. Although the optimal multiplier vector is not known, an approximation (uk, vk)
can be maintained as part of the algorithm. Given the current iterate (xk, uk, vk), the quadratic
approximation in x for the Lagrangian is

L(xk, uk, vk) +∇L(xk, uk, vk)
Tdx +

1

2
dTx∇2L(xk, uk, vk)dx,

and we can construct the quadratic subproblem by lettingBk to be an approximation of∇2L(xk, uk, vk),
and rk = ∇L(xk, uk, vk). Another variation, most often used in literature, is

(QP) min ∇f(xk)
Tdx + 1

2d
T
xBkdx

dx
s.t. ∇g(xk)

Tdx + g(xk) ≤ 0,
∇h(xk)

Tdx + h(xk) = 0

(27)

(the above two choices of rk are equivalent when only equality constraints are present in the problem
(P)).

The solution dx of (QP) can be used as a search direction for the next iterate xk+1. We also
need to update the estimates of the multipliers, which is done as follows: let (uQP , vQP) be the
vector of optimal multipliers for (QP). Then we will define the corresponding search directions as
(du, dv) = (uQP − uk, vQP − vk). We then choose a step-size α and define the next iterate to be
(xk+1, uk+1, vk+1) = (xk, uk, vk) + α(dx, du, dv).

There are several issues of potential concern in the algorithm as described so far. First, the
subproblems (QP) need to be feasible. While as a result of A2 this will be the case at points
xk which are close to x?, but it will not necessarily be true at “non-local” points. Secondly, the
subproblems need to have an optimal solution. This can be assured by the appropriate choice of
matrices Bk. Finally, the algorithm has to be designed in such a way that its iterates converge
to a desirable point. There are two aspects of convergence to consider: local and global. Local
convergence concerns the behavior of iterates if the algorithm is started (or has found a point) near
the optimum x?, and typically addresses rates of convergence. Global convergence analysis attempts
to describe when the iterates of the algorithm will converge to an optimum solution starting from
any point. This analysis is typically performed by the means of a merit function φ, i.e., a function
whose reduction implies progress towards a solution.

With these considerations in mind, we now state the template for a basic SQP algorithm:

SQP Algorithm

Initialization: given (x0, u0, v0), B0 and a merit function φ, set k = 0.

IOE 511/Math 562, Section 1, Fall 2007 70

1. Form and solve (QP) to obtain (dx, du, dv).

2. Choose α so that φ(xk+αdx) < φ(xk) (alternatively, choose α ≥ 0 that minimizes φ(xk+αdx)).

3. Set (xk+1, uk+1, vk+1) = (xk, uk, vk) + α(dx, du, dv).

4. Stop if converged.

5. Compute Bk+1.

6. Set k ← k + 1, go to 1.

12.2 Local convergence

The local convergence analysis establishes conditions under which the iterates of the algorithm
converge to a solution and at what rate, provided that the starting data (e.g., x0, u0, v0, B0) are
sufficiently close to the corresponding data at a solution x?.

We will make two assumptions to simplify the presentation. First, we assume that the active in-
equality constraints of (P) at x? are known. (This assumption can be justified since it can be shown
that under the assumption A3 the problem (QP) at xk will have the same active constraints as (P)
at x? if xk is close to x?.) Under this assumption, only equality-constrained problems need be con-
sidered for local analysis, and we will eliminate the terms referring to g(x) from the notation under
this assumption. We can now rewrite the quadratic problem with equality constraints as

(ECQP) min ∇f(xk)
Tdx + 1

2d
T
xBkdx

s.t. ∇h(xk)
Tdx + h(xk) = 0.

(28)

The second assumption arises from the fact that we will use the properties of the (pure) Newton’s
method to analyze the iterates of the algorithm. We therefore assume that the merit function φ(x)
is such that it allows α = 1 to be used as the stepsize.

For an equality constrained problem, the KKT conditions (under appropriate assumptions) lead to
the following formulas for the optimal multipliers:

v? = −
[
∇h(x?)T∇h(x?)

]−1∇h(x?)T∇f(x?).

By the smoothness assumption, the vector

v0 = −
[
∇h(x0)T∇h(x0)

]−1∇h(x0)T∇f(x0) (29)

can be made arbitrarily close to v? by choosing x0 close to x?.

From the first order optimality conditions for (ECQP), we obtain the equations for computing the
update direction (dx, dv):

Bkdx +∇h(xk)dv = −∇L(xk, vk)
∇h(xk)

Tdx = −h(xk)
(30)

(here, dv = vk+1 − vk = vQP − vk).

12.2.1 The Newton SQP method

The most straightforward method is obtained by setting Bk = ∇2L(xk, vk). Then the SQP method
can be viewed as an application of Newton’s method to solve the system of nonlinear equations

IOE 511/Math 562, Section 1, Fall 2007 71

obtained from the KKT conditions:

Ψ(x, v) =

[
∇L(x, v)
h(x)

]
= 0.

Assuming that x0 is close to x? it follows that v0 is close to v?, and hence ∇2L(x0, v0) is close to
∇2L(x?, v?). From assumptions A1 and A4, the Jacobian of this system, which is given by

∇Ψ(x, v) =

[
∇2L(x, v) ∇h(x)
∇h(x)T 0

]
is nonsingular at (x?, v?), and we can apply the Newton iteration scheme (whose iterates are
identical to those generated by the Newton SQP method). The following theorem is an immediate
result of the local analysis of Newton’s method:

Theorem 59 Let x0 be an initial estimate of the solution to (P) and let v0 be given by (29). Then
if ‖x0 − x?‖ is sufficiently small, the sequence of iterates (xk, vk) generated by the Newton SQP
method is well-defined and converges quadratically to the pair (x?, v?).

12.2.2 Quasi-Newton approximations

The SQP method as presented above has several disadvantages. First, it requires evaluation of
second-order derivatives at every iteration, which can be computationally expensive. Secondly, the
Hessians ∇2L(xk, vk) might not be positive definite, and as a result, the corresponding quadratic
problem will be hard to solve. Both these issues can be overcome by using positive definite approx-
imations Bk for ∇2L(xk, vk) which are easier to compute and update.

There is a lot of theoretical work that goes into designing an update scheme for the matrices Bk.
We would like these matrices to be positive definite (at least on the null space of ∇h(xk)). It is also
desirable for these matrices to be good approximations of ∇L(x?, v?) in the limit (at least, again,
when acting on vectors in the null space of ∇h(xk)).

One of the ways to generate Bk’s is to use the quasi-Newton methods which we discussed in
the framework of unconstrained optimization. The main difference is the usage of gradients of L
(instead of simply f) to construct the updates of the matrices. For example, we could use the
BFGS method and update the matrices as follows:

Bk+1 = Bk +
qqT

qT p
− Bkpp

TBk
pTBkp

,

where
p = xk+1 − xk, q = ∇L(xk+1, vk+1)−∇L(xk, vk+1).

When using this formula, the matrices Bk remain positive definite so long as pT q > 0. It can be
shown that if x? satisfies assumption A4 then the algorithm SQP with this choice of matrices Bk
and stepsizes αk = 1 will exhibit local superlinear convergence.

12.3 Global convergence

In this subsection we discuss how the merit function φ(x) assures that the iterates of the SQP
algorithm eventually get close to x?, thus making the results of the previous discussion applica-
ble.

IOE 511/Math 562, Section 1, Fall 2007 72

The standard way to ensure that a reduction in φ indicates progress is to construct φ so that the
solutions of (P) are unconstrained minimizers of φ. This brings us back to the idea of penalty
functions, and indeed, some of the most popular merit functions are the augmented Lagrangian
function and the linear penalty function. Another important attribute of the merit function is
that it should guide the iterates of the algorithm and provide a measure of progress by means of
exhibiting a descent.

12.3.1 l1 (linear) penalty merit function

First, we consider the l1 penalty merit function. We denote

φ1(x;µ) = f(x) + µ

[
m∑
i=1

gi(x)+ +
l∑

i=1

|hi(x)|

]
.

The following lemma establishes that φ1(x;µ) can indeed be used as a merit function:

Lemma 60 (10.4.1) Given an iterate xk consider the quadratic subproblem (27), where Bk is any

positive-definite matrix. Let dx solve this problem. If d 6= 0 and µ ≥ max
{
uQP1 , . . . , uQPm , vQP1 , . . . , vQPl

}
,

then dx is a descent direction at xk for the function φ1(x;µ).

Thus, the algorithm SQP can be applied using φ1(x;µ) as a merit function (of course, just as in the
penalty method, we have to overcome the difficulty that comes with optimizing a non-differentiable
function φ1). The following theorem demonstrates its global convergence:

Theorem 61 (10.4.2) Assume that the sequence of points {xk} generated by the algorithm SQP
with φ = φ1 is contained in a compact subset X of Rn, and that for any point x ∈ X and any B � 0
the corresponding QP has a unique solution and unique KKT multipliers (uQP , vQP) satisfying µ ≥
max

{
uQP1 , . . . , uQPm , vQP1 , . . . , vQPl

}
. Furthermore, assume that all the matrices Bk are uniformly

bounded and uniformly positive definite, i.e.,

∃β1 > 0, β2 > 0 : ‖Bk‖ ≤ β1, d
TBkd ≥ β2‖d‖2 ∀k.

Then every limit point of {xk} is a KKT point of (P).

Recall that to obtain local convergence rate results for Newton and quasi-Newton versions of the
SQP algorithm we had to assume that the stepsize of 1 is always used near the optimum. For
the general implementation of the algorithm, however, the line searches continue throughout the
algorithm. The merit function, therefore, must allow a steplength of 1 near the optimum when the
matrices Bk are chosen appropriately. A significant disadvantage of the merit function φ1(x;µ) is
that it may not allow the steplength α = 1 near the solution. This phenomenon, known as the
Maratos effect, precludes us from obtaining quadratic or superlinear convergence, unless additional
modifications are made in the algorithm.

There are several ways to deal with this phenomenon. For example, one may require the merit
function to exhibit a decrease over a sequence of several iterations, but not necessarily at every
iteration (if the function decreases over a fixed number of iterations, convergence is still guaranteed).
One of the ways of implementing it is to accept the steplength α = 1 even if it leads to an increase
in φ1 if you “suspect” you are close to the solution. If taking such steps does not lead to a decrease
in φ1 after a small number of iterations, restore the original iterate and perform a line search.

IOE 511/Math 562, Section 1, Fall 2007 73

12.3.2 Augmented Lagrangian merit function

To simplify the presentation, we will restrict our attention to the problems with only equality
constraints. We will discuss the following (familiar) version of the augmented Lagrangian function
(note the change of notation, however):

φF (x; η) = f(x) + h(x)T v̄(x) +
η

2
‖h(x)‖22,

where η is a constant to be determined, and

v̄(x) = −
[
∇h(x)T∇h(x)

]−1∇h(x)T∇f(x).

v̄(x) is the estimate of the KKT multipliers; note that v̄(x?) = v?.

The use of φF (x; η) as a merit function is justified by the following theorem:

Theorem 62 Suppose that all the matrices Bk are uniformly bounded and uniformly positive def-
inite. Suppose, furthermore, that the starting point x0 and all the succeeding iterates lie in some
compact set C such that the rows of ∇h(x)T are linearly independent for all x ∈ C. Then for η
sufficiently large, we have:

1. x? ∈ C is a strong local minimum12 of φF iff x? is a strong local minimum of (P), and

2. if x is not a KKT point of (P), then dx is a descent direction for φF .

In fact, it can be also shown that when the line searches are performed appropriately (i.e., satisfy
a condition similar to the Armijo rule) and η is sufficiently large, the iterates {xk} will converge
to a KKT point of (P). Since in practice it is not known in advance how large η needs to be, it is
necessary to employ a strategy for adjusting η (same is true for the merit function φ1, where the
strategy that should be used is fairly transparent).

In addition to differentiability, the augmented Lagrangian penalty function exhibits a decrease with
the stepsize α = 1 when the iterates converge superlinearly.

In order to extend the augmented Lagrangian approach to handle inequality constraints, one could
employ a version of an active set strategy. Another option is to consider the following problem:

min f(x)
x, t
s.t. h(x) = 0

gi(x) + t2i = 0, i = 1, . . . ,m.

where t is a vector of slack variables. This problem is equivalent to (P) in the sense that both have
a strong local solution at x?.

12.4 Some final issues

First note of caution is to observe that all the global convergence results above only guarantee
convergence to a KKT point of (P), which may not be a global, or even local, minimum.

12A local minimizer is strong, or isolated, if it is the only local minimizer in some ε-neighborhood.

IOE 511/Math 562, Section 1, Fall 2007 74

Recall that we have always made the assumption (either implicitly or explicitly) that the problem
(QP) always has a solution. This might not be the case: (QP) may be infeasible, or unbounded.
When implementing a practical algorithm one must consider ways to deal with these difficulties
when they arise.

One technique to avoid infeasibilities is to relax the constraints of the (QP) by using trust region
methods. Another possibility is to take dx to be some convenient direction when (QP) is infeasible,
for example, the steepest descent direction of the merit function. Also, the output of the algo-
rithm used to find a feasible point of (QP) (if found, used to initialize the algorithm for solving
(QP)) can often be useful in determining a good direction dx even if it demonstrates that (QP) is
infeasible.

When the problem (QP) is unbounded, a change in Bk (for example, adding a positive multiple of
the identity matrix) can be used to ensure that it is positive definite.

IOE 511/Math 562, Section 1, Fall 2007 75

13 Barrier Methods

Consider the constrained optimization problem (P):

(P) min f(x)
s.t. gi(x) ≤ 0, i = 1, . . . ,m

x ∈ Rn,

whose feasible region we denote by S = {x ∈ Rn : gi(x) ≤ 0, i = 1, . . . ,m}. Barrier methods
are also, like penalty methods, designed to solve (P) by instead solving a sequence of specially
constructed unconstrained optimization problems.

In a barrier method, we presume that we are given a point x0 that lies in the interior of the feasible
region S, and we impose a very large cost on feasible points that lie ever closer to the boundary of
S, thereby creating a “barrier” to exiting the feasible region.

Definition. A barrier function for (P) is any function b(x) : Rn → R that satisfies

• b(x) ≥ 0 for all x that satisfy g(x) < 0, and

• b(x)→∞ as limx maxi{gi(x)} → 0.

The idea in a barrier method is to dissuade points x from ever approaching the boundary of the
feasible region. We consider solving:

B(c) min f(x) + 1
c b(x)

s.t. g(x) < 0,
x ∈ Rn.

for a sequence of ck → +∞. Note that the constraints “g(x) < 0” are effectively unimportant in
B(c), as they are never binding in B(c).

Example:

b(x) =
m∑
i=1

1

−gi(x)

Suppose g(x) = (x− 4, 1− x)T , x ∈ R1. Then

b(x) =
1

4− x
+

1

x− 1
.

Let r(c, x) = f(x) + 1
c b(x). Let the sequence {ck} satisfy ck+1 > ck and ck →∞ as k →∞. Let xk

denote the exact solution to B(ck), and let x? denote any optimal solution of (P).

The following Lemma presents some basic properties of barrier methods.

Lemma 63 (Barrier Lemma) 1. r(ck, xk) ≥ r(ck+1, xk+1)

2. b(xk) ≤ b(xk+1)

3. f(xk) ≥ f(xk+1)

IOE 511/Math 562, Section 1, Fall 2007 76

4. f(x?) ≤ f(xk) ≤ r(ck, xk).

Proof:

1.

r(ck, xk) = f(xk) +
1

ck
b(xk) ≥ f(xk) +

1

ck+1
b(xk)

≥ f(xk+1) +
1

ck+1
b(xk+1) = r(ck+1, xk+1)

2.

f(xk) +
1

ck
b(xk) ≤ f(xk+1) +

1

ck
b(xk+1)

and

f(xk+1) +
1

ck+1
b(xk+1) ≤ f(xk) +

1

ck+1
b(xk).

Summing and rearranging, we have(
1

ck
− 1

ck+1

)
b(xk) ≤

(
1

ck
− 1

ck+1

)
b(xk+1).

Since ck < ck+1, it follows that b(xk+1) ≥ b(xk).

3. From the proof of (1.),

f(xk) +
1

ck+1
b(xk) ≥ f(xk+1) +

1

ck+1
b(xk+1).

But from (2.), b(xk) ≤ b(xk+1). Thus f(xk) ≥ f(xk+1).

4. f(x?) ≤ f(xk) ≤ f(xk) + 1
ck
b(xk) = r(ck, xk).

Let N(x, ε) denote the ball of radius ε centered at the point x. The next result concerns convergence
of the barrier method.

Theorem 64 (Barrier Convergence Theorem). Suppose f(x), g(x), and b(x) are continuous
functions. Let {xk}, k = 1, . . . ,∞, be a sequence of solutions of B(ck). Suppose there exists an
optimal solution x? of (P) for which N(x?, ε)∩{x | g(x) < 0} 6= ∅ for every ε > 0 . Then any limit
point x̄ of {xk} solves (P).

Proof: Let x̄ be any limit point of the sequence {xk}. From the continuity of f(x) and g(x),
limk→∞ f(xk) = f(x̄) and limk→∞ g(xk) = g(x̄) ≤ 0. Thus x̄ is feasible for (P).

For any ε > 0, there exists x̃ such that g(x̃) < 0 and f(x̃) ≤ f(x?) + ε. For each k,

f(x?) + ε+
1

ck
b(x̃) ≥ f(x̃) +

1

ck
b(x̃) ≥ r(ck, xk).

Therefore for k sufficiently large, f(x?) + 2ε ≥ r(ck, xk), and since r(ck, xk) ≥ f(x?) from (4.) of
the Barrier Lemma, then

f(x?) + 2ε ≥ lim
k→∞

r(ck, xk) ≥ f(x?).

IOE 511/Math 562, Section 1, Fall 2007 77

This implies that
lim
k→∞

r(ck, xk) = f(x?).

We also have

f(x?) ≤ f(xk) ≤ f(xk) +
1

ck
b(xk) = r(ck, xk).

Taking limits we obtain
f(x?) ≤ f(x̄) ≤ f(x?),

whereby x̄ is an optimal solution of (P).

A typical class of barrier functions are:

b(x) =

m∑
i=1

(−gi(x))−q, where q > 0

along with

b(x) = −
m∑
i=1

ln(min{1,−gi(x)}).

Note that the second barrier function is not differentiable. Actually, since the properties of the
barrier function are only essential near the boundary of the feasible region, the following barrier
function is the most commonly used one:

b(x) = −
m∑
i=1

ln(1,−gi(x)).

If can be shown that the above convergence properties apply to this function as well.

13.1 Karush-Kuhn-Tucker multipliers in barrier methods

Let
b(x) = γ(g(x)),

where γ(y) : Rm → R, and assume that γ(y) is continuously differentiable for all y < 0. Then

∇b(x) =
m∑
i=1

∂γ(g(x))

∂yi
∇gi(x),

and if xk solves B(ck), then ∇f(xk) + 1
ck
∇b(xk) = 0, that is,

∇f(xk) +
1

ck

m∑
i=1

∂γ(g(xk))

∂yi
∇gi(xk) = 0. (31)

Let us define

[uk]i =
1

ck

∂γ(g(xk))

∂yi
. (32)

Then (42) becomes:

∇f(xk) +

m∑
i=1

[uk]i∇gi(xk) = 0. (33)

IOE 511/Math 562, Section 1, Fall 2007 78

Therefore we can interpret the uk as a sort of vector of Karush-Kuhn-Tucker multipliers. In fact,
we have:

Lemma 65 Let (P) satisfy the conditions of the Barrier Convergence Theorem. Suppose γ(y) is
continuously differentiable and let uk be defined by (32). Then if xk → x̄ , and x̄ satisfies the linear
independence condition for gradient vectors of active constraints, then uk → ū, where ū is a vector
of Karush-Kuhn-Tucker multipliers for the optimal solution x̄ of (P).

Proof: Let xk → x̄ and let I = {i | gi(x̄) = 0} and N = {i | gi(x̄) < 0}. For all i ∈ N ,

[uk]i =
1

ck

∂γ(g(xk))

∂yi
→ 0 as k →∞,

since ck →∞ and gi(xk)→ gi(x̄) < 0, and ∂γ(g(x̄))
∂yi

is finite. Also [uk]i ≥ 0 for all i, and k sufficiently
large.

Suppose uk → ū as k → ∞. Then ū ≥ 0, and ūi = 0 for all i ∈ N . From the continuity of all
functions involved, (33) implies that

∇f(x̄) +
m∑
i=1

ūi∇gi(x̄) = 0, ū ≥ 0, ūT g(x̄) = 0.

Thus ū is a vector of Kuhn-Tucker multipliers. It remains to show that uk → ū for some unique ū.
The proof that uk → ū for some unique ū is exactly as in Lemma 56.

IOE 511/Math 562, Section 1, Fall 2007 79

14 Duality theory of nonlinear programming

14.1 The practical importance of duality

Duality arises in nonlinear (and linear) optimization models in a wide variety of settings. Some
immediate examples of duality are in:

Models of electrical networks The current flows are “primal variables” and the voltage differ-
ences are the “dual variables” that arise in consideration of optimization (and equilibrium)
in electrical networks.

Models of economic markets In these models, the “primal” variables are production levels and
consumption levels, and the “dual” variables are prices of goods and services.

Structural design In these models, the tensions on the beams are “primal” variables, and the
nodal displacements are the “dual” variables.

Nonlinear (and linear) duality is very useful. For example, dual problems and their solutions are
used in connection with:

Identifying near-optimal solutions A good dual solution can be used to bound the values of
primal solutions, and so can be used to actually identify when a primal solution is near-
optimal.

Proving optimality Using a strong duality theorem, one can prove optimality of a primal solution
by constructing a dual solution with the same objective function value.

Sensitivity analysis of the primal problem The dual variable on a constraint represents the
incremental change in the optimal solution value per unit increase in the RHS of the con-
straint.

Karush-Kuhn-Tucker conditions The optimal solution to the dual problem is a vector of KKT
multipliers.

Convergence of improvement algorithms The dual problem is often used in the convergence
analysis of algorithms.

Good structure Quite often, the dual problem has some good mathematical, geometric, or com-
putational structure that can exploited in computing solutions to both the primal and the
dual problem.

Other uses, too...

14.2 Definition of the dual problem

We will consider the primal problem in the following form:

(P) inf f(x)
s.t. g(x) ≤ 0

x ∈ X,

where g(x) : Rn → Rm. NOTE: unlike in our previous development, X no longer has to be an
open set. Indeed, it can now be any set, including, potentially, the feasible region of any equality

IOE 511/Math 562, Section 1, Fall 2007 80

constraints or other inequality constraints and restrictions that may be present in the problem.13

For example, one could have
X = {x ∈ Rn : x is integer},

or
X = {x ∈ Rn : ki(x) ≤ 0, i = 1, . . . , j; hi(x) = 0, i = 1, . . . , l}.

Let z? = inf{f(x) : g(x) ≤ 0, x ∈ X}. (By convention, if (P) is infeasible, we set z? = +∞, and if
(P) is unbounded, z? = −∞. Note that here we do not assume that, even if z? is finite, the optimal
value is attained.)

For a nonnegative m-vector u, the Lagrangian function is

L(x, u) = f(x) + uT g(x).

Define
L?(u) = inf

x∈X
L(x, u) = inf

x∈X
(f(x) + uT g(x)).

Notice that the optimization problem above may not attain its optimal value since X is not guar-
anteed to be a compact set; hence we use inf rather than min. If for some value of u ≥ 0 the
Lagrangian L(x, u) is unbounded below over X, we have L?(u) = −∞. The function L?(u) is
called the dual function. We presume that computing L?(u) is an easy task for any u.

The dual problem (D) is defined to be:

(D) sup
u≥0

L?(u).

Let v? be the optimal value (finite or infinite, attained or not) of the dual problem.

14.2.1 Problems with different formats of constraints

If the primal problem has the form

(P) inf f(x)
s.t. g(x)i ≤ 0, i ∈ L

g(x)i ≥ 0, i ∈ G
g(x)i = 0, i ∈ E
x ∈ X,

we can still form the Lagrangian as

L(x, u) = f(x) +
∑
i∈L

gi(x)ui +
∑
i∈G

gi(x)ui +
∑
i∈E

gi(x)ui

and construct the dual function L?(u) = infx∈X L(x, u). The only difference is the form of the dual
problem:

(D) sup L?(u)
s.t. ui ≥ 0, i ∈ L

ui ≤ 0, i ∈ G
ui unrestricted, i ∈ E

For simplicity, when studying the theory of duality, we will assume that the constraints of the primal
problem are all in “≤” form, but all results we develop apply to the general case as well.

13The text deals with equality constraints explicitly, but we will simplify the presentation.

IOE 511/Math 562, Section 1, Fall 2007 81

14.3 Examples

14.3.1 The dual of a linear program

(LP) inf cTx
s.t. b−Ax ≤ 0

x ∈ Rn.

L(x, u) = cTx+ uT (b−Ax) = uT b+ (c−ATu)Tx.

L?(u) = inf
x∈Rn

L(x, u) =

{
−∞, if ATu 6= c

uT b, if ATu = c.

The dual problem (D) is:

(D) sup
u≥0

L?(u) = supuT b s.t. ATu = c, u ≥ 0.

14.3.2 The dual of a binary integer program

(IP) inf cTx
s.t. b−Ax ≤ 0

xj ∈ {0, 1}, j = 1, . . . , n.

L(x, u) = cTx+ uT (b−Ax) = uT b+ (c−ATu)Tx.

L?(u) = inf
x∈{0,1}n

L(x, u) = uT b+
∑

j:(c−ATu)j<0

(c−ATu)j

The dual problem (D) is:

(D) sup
u≥0

L?(u) = sup
u≥0

uT b+
∑

j:(c−ATu)j<0

(c−ATu)j .

14.3.3 The dual of a quadratic problem

(LP) inf 1
2x

TQx+ cTx
s.t. b−Ax ≤ 0

x ∈ Rn.

L(x, u) =
1

2
xTQx+ cTx+ uT (b−Ax) = uT b+ (c−ATu)Tx+

1

2
xTQx.

L?(u) = inf
x∈Rn

L(x, u).

Assuming that Q is positive definite, we solve: Qx̃ = −(c − ATu), i.e., x̃ = −Q−1(c − ATu)
and

L?(u) = L(x̃, u) = −1

2
(c−ATu)TQ−1(c−ATu) + uT b.

IOE 511/Math 562, Section 1, Fall 2007 82

The dual problem (D) is:

(D) sup
u≥0

L?(u) = sup
u≥0
−1

2
(c−ATu)TQ−1(c−ATu) + uT b.

14.3.4 Dual of a log-barrier problem

Consider the following example of a log-barrier problem:

(BP) inf 5x1 + 7x2 − 4x3 −
∑3

j=1 ln(xj)

s.t. x1 + 3x2 + 12x3 = 37
x > 0

What is the dual of this problem?

14.4 Geometry of the dual

Let I = {(s, z) ∈ Rm+1 : g(x) ≤ s and f(x) ≤ z for some x ∈ X}.

Let H(u, b) = {(s, z) ∈ Rm+1 : uT s + z = b}. H(u, b) is a hyperplane, and it is a lower support of
I if uT s+ z ≥ b for all (s, z) ∈ I.

Consider now the following optimization problem, in which we determine a hyperplane H(u, b)
that is a lower support of I, and whose intersection with the m + 1st axis (i.e., intercept) is the
highest:

sup
u,b
{b : H(u, b) is a lower support of I}

= sup
u,b
{b : b ≤ uT s+ z ∀(s, z) ∈ I}

= sup
u≥0,b
{b : b ≤ uT s+ z ∀(s, z) ∈ I}

= sup
u≥0,b
{b : b ≤ uT g(x) + f(x) ∀x ∈ X}

= sup
u≥0,b
{b : b ≤ L(x, u) ∀x ∈ X}

= sup
u≥0,b
{b : b ≤ inf

x∈X
L(x, u)} = sup

u≥0
L?(u).

The last expression is exactly the dual problem. Therefore, the dual problem can be geometrically
interpreted as finding a hyperplane H(u, b) that is a lower support of I and whose intercept is the
highest. This highest value is exactly the optimal value of the dual problem.

Note that if X is a convex set and f and gi’s are convex, then I is a convex set.

14.5 Properties of the dual and weak duality

Proposition 66 The dual is a concave maximization problem.

Proof: It suffices to show that L?(u) is a concave function on the nonnegative orthant. Let u1 ≥ 0
and u2 ≥ 0 be given, and let u3 = λu1 + (1− λ)u2, λ ∈ [0, 1]. Then

L(u3) = inf
x∈X

f(x) + (u3)T g(x) = inf
x∈X

(λ(f(x) + (u1)T g(x)) + (1− λ)(f(x) + (u2)T g(x))

IOE 511/Math 562, Section 1, Fall 2007 83

≥ λ inf
x∈X

(f(x) + (u1)T g(x)) + (1− λ) inf
x∈X

(f(x) + (u2)T g(x))

= λL?(u1) + (1− λ)L?(u2).

Theorem 67 (Weak Duality Theorem) If x̄ is feasible in (P) and ū is feasible in (D), then
f(x̄) ≥ L?(ū).

Proof:
f(x̄) ≥ f(x̄) + ūT g(x̄) = L(x̄, ū) ≥ inf

x∈X
L(x, ū) = L?(ū).

Corollary 68
inf{f(x) : g(x) ≤ 0, x ∈ X} ≥ sup{L?(u) : u ≥ 0}

Corollary 69 If x̄ ∈ X satisfying g(x̄) ≤ 0 and ū ≥ 0 are such that f(x̄) = L?(ū), then x̄ and ū
solve the primal and the dual problem, respectively.

Corollary 70 If inf{f(x) : g(x) ≤ 0, x ∈ X} = −∞, then L?(u) = −∞ for any u ≥ 0.

Corollary 71 If sup{L?(u) : u ≥ 0} =∞, then the primal problem is infeasible.

Unlike in Linear Programming theory, the strong duality theorem cannot always be established for
general optimization problems.

14.6 Saddlepoint optimality criteria

The pair (x̄, ū) ∈ X × Rm+ is called a saddle point of the Lagrangian if

L(x̄, u) ≤ L(x̄, ū) ≤ L(x, ū) for all x ∈ X, u ≥ 0.

Theorem 72 (BSS 6.2.5) Let (x̄, ū) ∈ X × Rm+ . Then the following three conditions are equiva-
lent:

(a) (x̄, ū) is a saddle point of the Lagrangian

(b) (x̄, ū) satifies

1. L(x̄, ū) = L?(ū)

2. g(x̄) ≤ 0, and

3. ūT g(x̄) = 0.

(c) x̄ and ū are, respectively, optimal solutions to the primal and dual problems with no duality
gap, that is, with f(x̄) = L?(ū).

Proof: Suppose that (x̄, ū) is a saddle point. By definition, condition 1 must be true. Also, for
any u ≥ 0,

f(x̄) + ūT g(x̄) ≥ f(x̄) + uT g(x̄).

This implies that g(x̄) ≤ 0, since otherwise the above inequality can be violated by picking u ≥
0 appropriately — this establishes 2. Taking u = 0, we get ūT g(x̄) ≥ 0; hence, ūT g(x̄) = 0,
establishing 3. Therefore, (a) implies (b).

IOE 511/Math 562, Section 1, Fall 2007 84

If (b) holds, then x̄ and ū are feasible for their respective problems, and f(x̄) = L(x̄, ū) = L?(ū),
which implies that they are optimal solutions of the respective problems, and there is no duality
gap. That is, (b) implies (c).

Suppose now that (b) is satisfied. Then L(x̄, ū) ≤ L(x, ū) for all x ∈ X by 1. Furthermore,

L(x̄, ū) = f(x̄) ≥ L(x̄, u) ∀u ≥ 0.

Thus (x̄, ū) is a saddle point.

Finally, suppose (c) holds, i.e., x̄ and ū are optimal with no duality gap. Primal-dual feasibility
implies that

L?(ū) ≤ f(x̄) + ūT g(x̄) ≤ f(x̄).

Since there is no duality gap, equality holds throughout, implying conditions 1–3, and hence (x̄, ū)
is a saddle point.

If strong duality holds and a dual optimal solution ū exists, then any primal optimal point is also
a minimizer of L(x, ū). This fact sometimes allows us to compute a primal optimal solution from
a dual optimal solution.

Suppose that strong duality holds and ū is known. Suppose further that L(x, ū) has a unique
minimizer over the set X (this occurs, for instance, if X is a convex open set and L(x, ū) is a
strictly convex function of x). Then if solution of minx∈X L(x, ū) is primal feasible, it must be
primal optimal; if it is not primal feasible, then no primal optimal solution point can exists, i.e., z?

is only an inf, not a min. This observation is useful when the dual problem is easier to solve then
the primal — we’ll see some examples shortly.

14.7 Strong duality for convex optimization problems

Note that up until this point we made no assumptions about the functions f(x) and g(x), or the
structure of the set X. We do need to impose some assumptions for the following result:

Theorem 73 (KKT and saddle point optimality criteria) Suppose X is an open convex set,
and f and gi’s are convex and differentiable. Then KKT conditions and saddle point optimality
conditions are equivalent.

Proof: Suppose x̄ and ū together satisfy the KKT optimality conditions for (P). Then 1 and 2 in
Theorem 72 are satisfied, and

∇f(x̄) +
m∑
i=1

ūi∇gi(x̄) = 0,

or
∇xL(x̄, ū) = 0.

Since L(x, u) is convex in x for any u, this means that L?(ū) = L(x̄, ū), establishing 3. Thus (x̄, ū)
is a saddle point.

Conversely, if (x̄, ū) is a saddle point, then 1–3 hold by Theorem 72. As we discussed above, these
can be seen, for convex problem (P), as equivalent to the KKT conditions.

The above theorem shows that if, in a convex problem (P), the optimal solution satisfies KKT
conditions, then (P) has a strong dual, i.e., there is no duality gap between (P) and (D). However,

IOE 511/Math 562, Section 1, Fall 2007 85

as we know, KKT conditions may not hold at the optimal solution if the problem does not satisfy a
constraint qualification of some sort. For example, we can use the “linear constraint” CQ to prove
the following result from linear programming:

Corollary 74 (Strong duality in linear programming) Suppose (P) is an LP. Then (D) is
also an LP, and exactly one of the following holds:

(i) (P) and (D) are both infeasible (i.e., z? = +∞ and v? = −infty)

(ii) (P) is infeasible and (D) is unbounded (i.e., z? = v? = −infty)

(iii) (P) is unbounded and (D) is infeasible (i.e., z? == v? = −infty)

(iv) (P) and (D) both have finite optimal values with p? = v? and optimal solutions (x̄, ū) that
attain those values.

Also, if (P) is a convex problem and satisfies the Slater condition (saying that ∃x0 : g(x0) < 0)
then, again, it has a strong dual. In the homework, we will see an example of a (convex) problem
in which strong duality fails.

14.8 Perturbation and sensitivity analysis

Consider the following perturbed version of the original problem:

(Pλ) inf f(x)
s.t. g(x) ≤ λ

x ∈ X,

where λ ∈ Rm. The problem coincides with the original problem when λ = 0. We define the
perturbation function z(λ) as the optimal value of the perturbed problem. Notice that z(0) =
z?.

When the problem (P) is convex, then the function z(λ) is a convex function of λ (the proof is left
as a homework exercise). Moreover, the dual variables provide important information about how
rapidly z(λ) changes:

Theorem 75 Suppose that strong duality for (P) holds and that the dual optimum is attained. If
ū is the optimal solution of the dual of the unperturbed problem, then for any λ

z(λ) ≥ z(0)− ūTλ.

Proof: Suppose that x is any feasible point of the perturbed problem, i.e., g(x) ≤ λ. Then, by
strong duality,

z(0) = L?(ū) ≤ f(x) + ūT g(x) ≤ f(x) + ūTλ.

We conclude that for any x feasible for the perturbed problem,

f(x) ≥ z(0)− ūTλ,

from which the conclusion of the theorem follows.

If can furthermore be shown that, if the conditions of the above theorem hold and z(λ) is differen-
tiable at λ = 0, then −ū = ∇z(0).

IOE 511/Math 562, Section 1, Fall 2007 86

14.9 Duality strategies

14.9.1 Dualizing “bad” constraints

Suppose we wish to solve:
(P) minx cTx

s.t. Ax ≤ b
Nx ≤ g.

Suppose that optimization over the constraints “Nx ≤ g” is easy, but that the addition of the
constraints “Ax ≤ b” makes the problem much more difficult. This can happen, for example, when
the constraints “Nx ≤ g” are network constraints, and when “Ax ≤ b” are non-network constraints
in the model.

Let
X = {x | Nx ≤ g}

and re-write (P) as:
(P) : minx cTx

s.t. Ax ≤ b
x ∈ X.

The Lagrangian is:

L(x, u) = cTx+ uT (Ax− b) = −uT b+ (cT + uTA)x,

and the dual function is:

L?(u) := minx −uT b+ (cT + uTA)x
s.t. x ∈ X.

Notice that L?(u) is easy to evaluate for any value of u, and so we can attempt to solve (P) by
designing an algorithm to solve the dual problem:

(D) : maximumu L?(u)
s.t. u ≥ 0.

14.9.2 Dualizing a large problem into many small problems

Suppose we wish to solve:

(P) minx1,x2 (c1)Tx1 +(c2)Tx2

s.t. B1x1 +B2x2 ≤ d
A1x1 ≤ b1

A2x2 ≤ b2

Notice here that if it were not for the constraints “B1x1 + B2x2 ≤ d”, that we would be able to
separate the problem into two separate problems. Let us dualize on these constraints. Let:

X =
{

(x1, x2) | A1x1 ≤ b1, A2x2 ≤ b2
}

IOE 511/Math 562, Section 1, Fall 2007 87

and re-write (P) as:
(P) minx1,x2 (c1)Tx1 +(c2)Tx2

s.t. B1x1 +B2x2 ≤ d
(x1, x2) ∈ X

The Lagrangian is:

L(x, u) = (c1)Tx1 + (c2)Tx2 + uT (B1x1 +B2x2 − d)
= −uTd+ ((c1)T + uTB1)x1 + ((c2)T + uTB2)x2,

and the dual function is:

L?(u) = minx1,x2 −uTd+ ((c1)T + uTB1)x1 + ((c2)T + uTB2)x2

s.t. (x1, x2) ∈ X

which can be re-written as:

L?(u) =− uTd
+ min
A1x1≤b1

((c1)T + uTB1)x1

+ min
A2x2≤b2

((c2)T + uTB2)x2

Notice once again that L?(u) is easy to evaluate for any value of u, and so we can attempt to solve
P by designing an algorithm to solve the dual problem:

(D) maximumu L?(u)
s.t. u ≥ 0

IOE 511/Math 562, Section 1, Fall 2007 88

14.10 A slight detour: subgradient optimization

14.10.1 Review: separating hyperplane theorems

Recall that in Theorem 27 we established that, if S be a nonempty closed convex set in Rn, and
y 6∈ S, then ∃p 6= 0 and α such that H = {x : pTx = α} strongly separates S and {y}.

This result can be extended to prove the following two theorems:

Theorem 76 (BSS 2.4.7) If S is a nonempty convex set in Rn, and let x̄ be contained in the
boundary of S. Then there exists a hyperplane that supports S at x̄, i.e., there exists p ∈ Rn such
that pT (x− x̄) ≤ 0 for each x in the closure of S.

Theorem 77 (BSS 2.4.8) Suppose S1 and S2 are two nonempty convex sets in Rm, and suppose
they do not intersect. Then there exists a hyperplane that separates S1 and S2, i.e., there exists
p ∈ Rn such that

inf
x∈S1

pTx ≥ sup
x∈S2

pTx.

14.10.2 Subgradients of convex functions

Let S ∈ Rn and f : S → R be given. The epigraph of f , denoted by epif , is a set defined as

epif = {(x, α) ∈ Rn+1 : x ∈ S, α ∈ R, f(x) ≤ α}

Theorem 78 Let S be a nonempty convex set. Then f : S → R is a convex function if and only
if epif is a convex set.

Proof: Left as an exercise.

Suppose that f(x) is a convex function. If f(x) is differentiable, we have the gradient inequal-
ity:

f(x) ≥ f(x̄) +∇f(x̄)T (x− x̄) for any x ∈ S ,

where typically we think of S = Rn. There are many important convex functions that are not
differentiable. The notion of the gradient generalizes to the concept of a subgradient of a convex
function. A vector g ∈ Rn is called a subgradient of the convex function f(x) at x = x̄ if the
following subgradient inequality is satisfied:

f(x) ≥ f(x̄) + gT (x− x̄) for all x ∈ S.

Theorem 79 Supose f : S → R is a convex function. If x̄ ∈ intS, then there exists a vector g
such that the hyperplane

H = {(x, y) ∈ Rn+1 : y = f(x̄) + gT (x− x̄)}

supports epif at (x̄, f(x̄)). In particular, g is a subgradient of f at x̄.

IOE 511/Math 562, Section 1, Fall 2007 89

Proof: Because epif is a convex set, and (x̄, f(x̄)) belongs to the boundary of epif , here exists a
supporting hyperplane to epif at (x̄, f(x̄)). Thus, there exists a nonzero vector (g, u) ∈ Rn+1 such
that

gTx+ uα ≤ gT x̄+ f(x̄)u for all (x, α) ∈ epif.

Let α be any scalar larger than f(x). Then as we make α arbitrarily large, the inequality must still
hold. Thus u ≤ 0. If u < 0, we can re-scale such that u = −1. Then gTx− α ≤ gT x̄− f(x̄), which
upon rearranging terms yields:

α ≥ f(x̄) + gT (x− x̄) for all (x, α) ∈ epif.

In particular, with α = f(x), f(x) ≥ f(x̄) + gT (x− x̄), proving the theorem.

It remains to show that u = 0 is impossible. If u = 0, then gTx ≤ gT x̄ for all x ∈ S. But since
x̄ ∈ intS, we have x̄+ δg ∈ S for δ > 0 sufficiently small. Thus, gT (x̄+ δg) ≤ gT x̄, i.e., δgT g ≤ 0.
But this is a contradiction, since δ > 0 and g 6= 0, since (g, u) = (g, 0) 6= 0.

For each x, let ∂f(x) denote the set of all subgradients of f(x) at x. We call ∂f(x) the “subdiffer-
ential of f(x).” We write g ∈ ∂f(x) if g is a subgradient of f at x. If f(x) is differentiable, then
∂f(x) = {∇f(x)}

Theorem 80 Suppose f : S → R is a function defined on a convex set S. Suppose that for each
x̄ ∈ intS there exists a subgradient vector g. Then f is a convex function on intS.

Theorem 81 Let f be convex of Rn, let S be a convex set, and consider the following optimization
problem:

min
x∈S

f(x)

Then x̄ is a global minimizer if and only if there exists g ∈ ∂f(x̄) such that gT (x− x̄) for any x ∈ S.

Proof: The “if” part follows easily by the subgradient inequality.

Conversely, suppose x̄ is a global minimizer. Define the following sets:

A = {(d, α) ∈ Rn+1 : f(x̄+ d) < α+ f(x̄)}

and
B = {(d, α) ∈ Rn+1 : x̄+ d ∈ S, α ≤ 0}.

It is not hard to see that both A and B are convex sets, and A ∩B = ∅. (If not, x̄ would not be a
globally optimal solution.)

Therefore, A and B can be separated by a hyperplane H = {(d, α) ∈ Rn+1 : gTd+ uα = β} where
(g, u) 6= 0 and

• f(x̄+ d) < α+ f(x̄)⇒ gTd+ uα ≤ β

• x̄+ d ∈ S, α ≤ 0⇒ gTd+ uα ≥ β

In the first implication, α can be made arbitrarily large, which means u ≤ 0. Also, setting d = 0
and α = ε > 0 implies that β ≥ εu. In the second implication setting d = 0 and α = 0 implies
that β ≤ 0. Thus, β = 0. In the second implication, setting α = 0 we have gTd ≥ 0 whenever
x̄+ d ∈ S, and so gT (x̄+ d− x̄) ≥ 0 whenever x̄+ d ∈ S. Put another way, we have x ∈ S implies
that gT (x− x̄) ≥ 0.

IOE 511/Math 562, Section 1, Fall 2007 90

It only remains to show that g is a subgradient. Note that u < 0, for if u = 0, it would follow from
the first implication that gTd ≤ 0 for any d, a contradiction. Since u < 0, we can re-scale so that
u = −1.

Now let d be given so that x̄ + d ∈ S and let α = f(x̄ + d) − f(x̄) + ε for some ε > 0. Thus
f(x̄+ d) ≥ f(x̄) = gTd for all x̄+ d ∈ S. Setting x = x̄+ d, we have that if x ∈ S,

f(x) ≥ f(x̄) + gT (x− x̄),

and so g is a subgradient of f at x̄.

14.10.3 Subgradient method for minimizing a convex function

Suppose that f(x) is a convex function, and that we seek to solve:

(P) z? = min f(x)
s.t. x ∈ Rn.

If f(x) is differentiable and d := −∇f(x̄) satisfies d 6= 0, then d is an descent direction at x̄,
namely

f(x̄+ εd) < f(x̄) for all ε > 0 and sufficiently small.

This is illustrated in Figure 1. However, if f(x) is not differentiable and g is a subgradient of f(x)
at x = x̄, then g is not necessarily an descent direction. This is illustrated in Figure 2.

The following algorithm generalizes the steepest descent algorithm and can be used to minimize a
nondifferentiable convex function f(x).

Subgradient method

Step 0: Initialization. Start with any point x1 ∈ Rn. Choose an infinite sequence of positive
stepsize values {λk}∞k=1. Set k = 1.

Step 1: Compute a subgradient. Compute g ∈ ∂f(xk). If g = 0, stop; xk solves (P).

Step 2: Compute stepsize. Compute stepsize λk from stepsize series.

Step 3: Update Iterate. Set xk+1 ← xk − λk g
‖g‖ . Set k ← k + 1 and go to Step 1.

Note in this algorithm that the step-size λk at each iteration is determined without a line-search,
and in fact is predetermined in Step 0. One reason for this is that a line-search might not be
worthwhile, since −g is not necessarily a descent direction for a non-differentiable function.

As it turns out, the viability of the subgradient method depends critically on the sequence of
step-sizes:

Theorem 82 Suppose that f is a convex function whose domain D ⊆ Rn satisfies intD 6= ∅.
Suppose that {λk}∞k=1 satisfies:

lim
k→∞

λk = 0 and
∞∑
k=1

λk =∞.

Let {xk}∞k=1 be the iterates generated by the subgradient method. Then

inf
k
f(xk) = z?.

IOE 511/Math 562, Section 1, Fall 2007 91

Proof: Suppose the result is not true. Then there exists ε > 0 such that f(xk) ≥ z? + ε for all k.
Let

T = {x ∈ Rn : f(x) ≤ z? + ε}.

Then there exist x̂ and ρ > 0 for which B(x̂, ρ) ⊂ T . Let gk be the subgradient chosen by the
subgradient method at the iterate xk. By the subgradient inequality we have for all k:

f(xk) ≥ z? + ε ≥ f
(
x̂+ ρ

gk
‖gk‖

)
≥ f(xk) + gTk

(
x̂+ ρ

gk
‖gk‖

− xk
)
,

which upon rearranging yields:

gTk (x̂− xk) ≤ −ρ
gTk gk
‖gk‖

= −ρ‖gk‖.

We also have, for each k,

‖xk+1 − x̂‖2 =

∥∥∥∥xk − λk gk
‖gk‖

− x̂
∥∥∥∥2

= ‖xk − x̂‖2 + λ2
k + 2λk

gTk (x̂− xk)
‖gk‖

≤ ‖xk − x̂‖2 + λ2
k − 2λkρ

= ‖xk − x̂‖2 + λk(λk − 2ρ).

For k sufficiently large, say, k ≥ K, we have λk ≤ ρ, whereby:

‖xk+1 − x̂‖2 ≤ ‖xk − x̂‖2 − ρλk.

However, this implies by induction that for all j ≥ 1 we have:

‖xK+j − x̂‖2 ≤ ‖xK − x̂‖2 − ρ
K+j∑

k=K+1

λk.

Now for j sufficiently large, the right hand side expression is negative, since
∑∞

k=1 λk =∞, which
yields a contradiction, since the left hand side must be nonnegative.

14.10.4 Subgradient method with projections

Problem (P) stated in the beginning of this subsection generalizes to the following (constrained)
problem:

(PS) z? = min f(x)
s.t. x ∈ S,

where S is a closed convex set. We assume that S is a simple enough set that we can easily compute
projections onto S. I.e., for any point c ∈ Rn, we can easily compute

ΠS(c) = argminx∈S ‖c− x‖.

The following algorithm is a simple extension of the subgradient method for unconstrained mini-
mization, but includes a projection computation so that all iterate values xk satisfy xk ∈ S.

IOE 511/Math 562, Section 1, Fall 2007 92

Subgradient method with projections

Step 0: Initialization. Start with any point x1 ∈ S. Choose an infinite sequence of positive
stepsize values {λk}∞k=1. Set k = 1.

Step 1: Compute a subgradient. Compute g ∈ ∂f(xk). If g = 0, stop; xk solves (P).

Step 2: Compute stepsize. Compute stepsize λk from stepsize series.

Step 3: Update Iterate. Set xk+1 ← ΠS

(
xk − λk g

‖g‖

)
. Set k ← k + 1 and go to Step 1.

Similarly to Theorem 82, we have

Theorem 83 Suppose that f is a convex function whose domain D ⊆ Rn satisfies intD ∩ S 6= ∅.
Suppose that {λk}∞k=1 satisfies:

lim
k→∞

λk = 0 and
∞∑
k=1

λk =∞.

Let {xk}∞k=1 be the iterates generated by the subgradient method. Then

inf
k
f(xk) = z?.

The proof of Theorem 83 relies on the following “non-expansive” property of the projection operator
ΠS :

Lemma 84 Let S be a closed convex set and let ΠS be the projection operator onto S. Then for
any two vectors c1 and c2 in Rn,

‖ΠS(c1)−ΠS(c2)‖ ≤ ‖c1 − c2‖.

Proof: Let b1 = ΠS(c1) and b2 = ΠS(c2). Then from Theorem 28 we have:

(c1 − b1)T (x− b1) ≤ 0 ∀x ∈ C, and (c2 − b2)T (x− b2) ≤ 0 ∀x ∈ C.

In particular, because b1, b2 ∈ C, it follows that

(c1 − b1)T (b2 − b1) ≤ 0, and (c2 − b2)T (b1 − b2) ≤ 0.

Then note that

‖c1 − c2‖2 = ‖b1 − b2 + (c1 − b1 − c2 + b2)‖2

= ‖b1 − b2‖2 + ‖c1 − b1 − c2 + b2‖2 + 2(b1 − b2)T (c1 − b1 − c2 + b2)

≥ ‖b1 − b2‖2 + 2(b1 − b2)T (c1 − b1) + 2(b1 − b2)T (−c2 + b2)

≥ ‖b1 − b2‖2,

which proves the lemma.

The proof of Theorem 83 can easily be constructed using Lemma 84 and by folowing the logic used
in the proof of Theorem 82.

IOE 511/Math 562, Section 1, Fall 2007 93

g

f(x) + f(x)T(x-x)
_ _

Figure 1: Contours of a concave functions. The gradient is an ascent direction.

14.11 Solution of the Lagrangian dual via subgradient optimization

We start with the primal problem:

(P) minx f(x)
s.t. gi(x) ≤ 0, i = 1, . . . ,m

x ∈ X.

We create the Lagrangian:
L(x, u) := f(x) + uT g(x)

and the dual function:
L?(u) := min

x∈X
f(x) + uT g(x)

The dual problem then is:
(D) maxu L?(u)

s.t. u ≥ 0

Recall that L?(u) is a concave function. For concave functions, we work with supergradients. If f
is a concave function whose domain is a convex set S, then g is a supergradient of f at x̄ ∈ S if it
is a subgradient of −f at x̄, or if

f(x) ≤ f(x̄) + gT (x− x̄) for all x ∈ S.

Here is an illustration of a situation in which a supergradient of a concave function is not necessarily
an ascent direction: see figures 1–2.

The premise of Lagrangian duality is that it is “easy” to compute L?(ū) for any given ū. That is,
it is easy to compute an optimal solution x̄ ∈ X of

L?(ū) = min
x∈X

f(x) + ūT g(x) = f(x̄) + ūT g(x̄)

for any given ū. It turns out that computing subgradients of L?(u) is then also easy. We have:

Proposition 85 Suppose that ū is given and that x̄ ∈ X is an optimal solution of L?(ū) =
min
x∈X

f(x) + ūT g(x). Then g := g(x̄) is a subgradient of L?(u) at u = ū.

IOE 511/Math 562, Section 1, Fall 2007 94

g

f(x) + gT(x-x)
_ _

Figure 2: Contours of a concave functions. A supergradient is not necessarily an ascent direction.

Proof: For any u ≥ 0 we have

L?(u) = min
x∈X

f(x) + uT g(x)

≤ f(x̄) + uT g(x̄)

= f(x̄) + ūT g(x̄) + (u− ū)T g(x̄)

= min
x∈X

f(x) + ūT g(x) + g(x̄)T (u− ū)

= L?(ū) + gT (u− ū).

Therefore g is a subgradient of L?(u) at ū.

The Lagrangian dual problem (D) is in the same format as problem (PS), with S = Rm+ . In order
to apply the projected subgradient method to this problem, we need to be able to conveniently
compute the projection of any vectore v ∈ Rm onto S = Rm+ . This indeed is easy: if v+ is defined
as the vector whose components are the positive parts of respective components of v, then it is easy
to see that ΠRm+ (v) = v+.

The subgradient method for solving the Lagrangian dual can now be stated:

Step 0: Initialization. Start with any point u1 ∈ Rm+ , u1 ≥ 0. Choose an infinite sequence of
positive stepsize values {λk}∞k=1. Set k = 1.

Step 1: Compute a subgradient. Solve for an optimal solution x̄ of L?(uk) = min
x∈X

f(x) +

uTk g(x). Set g := g(x̄).

Step 2: Compute stepsize. Compute stepsize λk from stepsize series.

Step 3: Update Iterate. Set uk+1 ← uk+λk
g
‖g‖ . If uk+1 6≥ 0, re-set uk+1 ← u+

k+1. Set k ← k+1
and go to Step 1.

IOE 511/Math 562, Section 1, Fall 2007 95

15 Primal-dual interior point methods for linear programming

15.1 The problem

The logarithmic barrier approach to solving a linear program dates back to the work of Fiacco and
McCormick in 1967 in their book Sequential Unconstrained Minimization Techniques, also known
simply as SUMT. The method was not believed then to be either practically or theoretically inter-
esting, when in fact today it is both! The method was re-born as a consequence of Karmarkar’s
interior-point method, and has been the subject of an enormous amount of research and compu-
tation, even to this day. In these notes we present the basic algorithm and a basic analysis of its
performance.

Consider the linear programming problem in standard form:

(P) min cTx
s.t. Ax = b

x ≥ 0,

where x is a vector of n variables, whose standard linear programming dual problem is:

D : max bTπ
s.t. ATπ + s = c

s ≥ 0.

Given a feasible solution x of P and a feasible solution (π, s) of D, the duality gap is simply

cTx− bTπ = xT s ≥ 0.

We introduce the following notation which will be very convenient for manipulating equations, etc.
Suppose that x > 0. Define the matrix X to be the n× n diagonal matrix whose diagonal entries
are precisely the components of x. Then X looks like:

x1 0 . . . 0
0 x2 . . . 0
...

...
. . .

...
0 0 . . . xn

 .

Notice that X is positive definite, and so is X2, which looks like:
x2

1 0 . . . 0
0 x2

2 . . . 0
...

...
. . .

...
0 0 . . . x2

n

 .

Similarly, the matrices X−1 and X−2 look like:
1/x1 0 . . . 0

0 1/x2 . . . 0
...

...
. . .

...
0 0 . . . 1/xn

IOE 511/Math 562, Section 1, Fall 2007 96

and
1/x2

1 0 . . . 0
0 1/x2

2 . . . 0
...

...
. . .

...
0 0 . . . 1/x2

n

 .

Let us introduce a logarithmic barrier term for (P). We obtain:

P (θ) min cTx− θ
n∑
j=1

ln(xj)

s.t. Ax = b
x > 0.

Because the gradient of the objective function of P (θ) is simply c− θX−1e, (where e is the vector
of ones, i.e., e = (1, 1, 1, ..., 1)T), the Karush-Kuhn-Tucker conditions for P (θ) are:

Ax = b, x > 0

c− θX−1e = ATπ.
(34)

If we define s = θX−1e, then
1

θ
Xs = e,

equivalently
1

θ
XSe = e,

and we can rewrite the Karush-Kuhn-Tucker conditions as:

Ax = b, x > 0

ATπ + s = c

1

θ
XSe− e = 0.

(35)

From the equations of (35) it follows that if (x, π, s) is a solution of (35), then x is feasible for P ,
(π, s) is feasible for D, and the resulting duality gap is:

xT s = eTXSe = θeT e = θn.

This suggests that we try solving P (θ) for a variety of values of θ as θ → 0.

However, we cannot usually solve (35) exactly, because the third equation group is not linear in the
variables. We will instead define a “β-approximate solution” of the Karush-Kuhn-Tucker conditions
(35). A β-approximate solution of P (θ) is defined as any solution (x, π, s) of

Ax = b, x > 0

ATπ + s = c∥∥∥∥1

θ
Xs− e

∥∥∥∥ ≤ β.
(36)

Here the norm ‖ · ‖ is the Euclidean norm.

IOE 511/Math 562, Section 1, Fall 2007 97

Lemma 86 If (x̄, π̄, s̄) is a β-approximate solution of P (θ) and β < 1, then x̄ is feasible for P ,
(π̄, s̄) is feasible for D, and the duality gap satisfies:

nθ(1− β) ≤ cT x̄− bT π̄ = x̄T s̄ ≤ nθ(1 + β). (37)

Proof: Primal feasibility is obvious. To prove dual feasibility, we need to show that s̄ ≥ 0. To see
this, note that the third equation system of (36) implies that

−β ≤ x̄j s̄j
θ
− 1 ≤ β

which we can rearrange as:
θ(1− β) ≤ x̄j s̄j ≤ θ(1 + β). (38)

Therefore x̄j s̄j ≥ (1− β)θ > 0, which implies x̄j s̄j > 0, and so s̄j > 0. From (38) we have

nθ(1− β) =
n∑
j=1

θ(1− β) ≤
n∑
j=1

x̄j s̄j = x̄T s̄ ≤
n∑
j=1

θ(1 + β) = nθ(1 + β).

15.2 The primal-dual algorithm

Based on the analysis just presented, we are motivated to develop the following algorithm:

Step 0: Initialization Data is (x0, π0, s0, θ0). k = 0. Assume that (x0, π0, s0) is a β-approximate
solution of P (θ0) for some known value of β that satisfies β < 1

2 .

Step 1: Set current values (x̄, π̄, s̄) = (xk, πk, sk), θ = θk.

Step 2: Shrink θ. Set θ′ = αθ for some α ∈ (0, 1).

Step 3: Compute the primal-dual Newton direction. Compute the Newton step (∆x,∆π,∆s)
for the equation system (35) at (x, π, s) = (x̄, π̄, s̄) for θ′, by solving the following system of
equations in the variables (∆x,∆π,∆s):

A∆x = 0

AT∆π + ∆s = 0

S̄∆x+ X̄∆s = X̄S̄e− θ′e.
(39)

Denote the solution to this system by (∆x,∆π,∆s).

Step 4: Update All Values.

(x′, π′, s′) = (x̄, π̄, s̄) + (∆x,∆π,∆s)

Step 5: Reset Counter and Continue. (xk+1, πk+1, sk+1) = (x′, π′, s′). θk+1 = θ′. k ← k + 1.
Go to Step 1.

IOE 511/Math 562, Section 1, Fall 2007 98

! = 0

! = 1/10

! = 10

! = 100

Figure 3: A conceptual picture of the interior-point algorithm.

Figure 3 shows a picture of the algorithm.

Some of the issues regarding this algorithm include:

• how to set the approximation constant β and the fractional decrease parameter α. We will
see that it will be convenient to set β = 3

40 and

α = 1−
1
8

1
5 +
√
n
.

• the derivation of the primal-dual Newton equation system (39)

• whether or not successive iterative values (xk, πk, sk) are β-approximate solutions to P (θk)

• how to get the method started

15.3 The primal-dual Newton step

Recall that we introduced a logarithmic barrier term for P to obtain P (θ):

P (θ) : minx cTx− θ
n∑
j=1

ln(xj)

s.t. Ax = b
x > 0,

IOE 511/Math 562, Section 1, Fall 2007 99

the Karush-Kuhn-Tucker conditions for which are:

Ax = b, x > 0

c− θX−1e = ATπ.
(40)

We defined s = θX−1e, and rewrote the Karush-Kuhn-Tucker conditions as:

Ax = b, x > 0

ATπ + s = c

1

θ
XSe− e = 0.

(41)

Let (x̄, π̄, s̄) be our current iterate, which we assume is primal and dual feasible, namely:

Ax̄ = b, x̄ > 0, AT π̄ + s̄ = c, s̄ > 0. (42)

Introducing a direction (∆x,∆π,∆s), the next iterate will be (x̄, π̄, s̄)+(∆x,∆π,∆s), and we want
to solve:

A(x̄+ ∆x) = b, x̄+ ∆x > 0

AT (π̄ + ∆π) + (s̄+ ∆s) = c

1

θ
(X̄ + ∆X)(S̄ + ∆S)e− e = 0.

Keeping in mind that (x̄, π̄, s̄) is primal-dual feasible and so satisfies (42), we can rearrange the
above to be:

A∆x = 0

AT∆π + ∆s = 0

S̄∆x+ X̄∆s = θe− X̄S̄e−∆X∆Se.

Notice that the only nonlinear term in the above system of equations in (∆x,∆π,∆s) is term the
term “ ∆X∆Se” in the last system. If we erase this term, which is the same as the linearized
version of the equations, we obtain the following primal-dual Newton equation system:

A∆x = 0

AT∆π + ∆s = 0

S̄∆x+ X̄∆s = θe− X̄S̄e.
(43)

The solution (∆x,∆π,∆s) of the system (43) is called the primal-dual Newton step. We can
manipulate these equations to yield the following formulas for the solution:

∆x ←
[
I − X̄S̄−1AT

(
AX̄S̄−1AT

)−1
A
] (
−x̄+ θS̄−1e

)
,

∆π ←
(
AX̄S̄−1AT

)−1
A
(
x̄− θS̄−1e

)
,

∆s ← AT
(
AX̄S̄−1AT

)−1
A
(
−x̄+ θS̄−1e

)
.

(44)

Notice, by the way, that the computational effort in these equations lies primarily in solving a single
equation: (

AX̄S̄−1AT
)

∆π = A
(
x̄− θS̄−1e

)
.

Once this system is solved, we can easily substitute:

∆s ← −AT∆π
∆x ← −x̄+ θS̄−1e− S̄−1X̄∆s.

(45)

IOE 511/Math 562, Section 1, Fall 2007 100

However, let us instead simply work with the primal-dual Newton system (43). Suppose that
(∆x,∆π,∆s) is the (unique) solution of the primal-dual Newton system (43). We obtain the new
value of the variables (x, π, s) by taking the Newton step:

(x′, π′, s′) = (x̄, π̄, s̄) + (∆x,∆π,∆s).

We have the following very powerful convergence theorem which demonstrates the quadratic con-
vergence of Newton’s method for this problem, with an explicit guarantee of the range in which
quadratic convergence takes place.

Theorem 87 (Explicit Quadratic Convergence of Newton’s Method) Suppose that (x̄, π̄, s̄)
is a β-approximate solution of P (θ) and β < 1

3 . Let (∆x,∆π,∆s) be the solution to the primal-dual
Newton equations (43), and let:

(x′, π′, s′) = (x̄, π̄, s̄) + (∆x,∆π,∆s).

Then (x′, π′, s′) is a
(

1+β
(1−β)2

)
β2-approximate solution of P (θ).

Proof: Our current point (x̄, π̄, s̄) satisfies:

Ax̄ = b, x̄ > 0

AT π̄ + s̄ = c∥∥∥∥1

θ
X̄S̄e− e

∥∥∥∥ ≤ β.
(46)

Furthermore the primal-dual Newton step (∆x,∆π,∆s) satisfies:

A∆x = 0

AT∆π + ∆s = 0

S̄∆x+ X̄∆s = θe− X̄S̄e.
(47)

Note from the first two equations of (47) that ∆xT∆s = 0. From the third equation of (46) we
have

1− β ≤ s̄j x̄j
θ
≤ 1 + β, j = 1, . . . , n, (48)

which implies:

x̄j ≥
(1− β)θ

s̄j
and s̄j ≥

(1− β)θ

x̄j
, j = 1, . . . , n. (49)

As a result of this we obtain:

θ(1− β)‖X̄−1∆x‖2 = θ(1− β)∆xT X̄−1X̄−1∆x

≤ ∆xT X̄−1S̄∆x

= ∆xT X̄−1
(
θe− X̄S̄e− X̄∆s

)
= ∆xT X̄−1

(
θe− X̄S̄e

)
≤ ‖X̄−1∆x‖‖θe− X̄S̄e‖
≤ ‖X̄−1∆x‖βθ.

From this it follows that

‖X̄−1∆x‖ ≤ β

1− β
< 1.

IOE 511/Math 562, Section 1, Fall 2007 101

Therefore
x′ = x̄+ ∆x = X̄(e+ X̄−1∆x) > 0.

We have the exact same chain of inequalities for the dual variables:

θ(1− β)‖S̄−1∆s‖2 = θ(1− β)∆sT S̄−1S̄−1∆s

≤ ∆sT S̄−1X̄∆s

= ∆sT S̄−1
(
θe− X̄S̄e− S̄∆x

)
= ∆sT S̄−1

(
θe− X̄S̄e

)
≤ ‖S̄−1∆s‖‖θe− X̄S̄e‖
≤ ‖S̄−1∆s‖βθ.

From this it follows that

‖S̄−1∆s‖ ≤ β

1− β
< 1.

Therefore
s′ = s̄+ ∆s = S̄(e+ S̄−1∆s) > 0.

Next note from (47) that for j = 1, . . . , n we have:

x′js
′
j = (x̄j + ∆xj)(s̄j + ∆sj) = x̄j s̄j + x̄j∆sj + ∆xj s̄j + ∆xj∆sj = θ + ∆xj∆sj .

Therefore (
e− 1

θ
X ′S′e

)
j

= −∆xj∆sj
θ

.

From this we obtain: ∥∥∥∥e− 1

θ
X ′S′e

∥∥∥∥ ≤ ∥∥∥∥e− 1

θ
X ′S′e

∥∥∥∥
1

=

n∑
j=1

|∆xj∆sj |
θ

=

n∑
j=1

|∆xj |
x̄j

|∆sj |
s̄j

x̄j s̄j
θ

≤
n∑
j=1

|∆xj |
x̄j

|∆sj |
s̄j

(1 + β)

≤ ‖X̄−1∆x‖‖S̄−1∆s‖(1 + β)

≤
(

β

1− β

)2

(1 + β).

15.4 Complexity analysis of the algorithm

Theorem 88 (Relaxation Theorem) Suppose that (x̄, π̄, s̄) is a β = 3
40 -approximate solution of

P (θ). Let

α = 1−
1
8

1
5 +
√
n

IOE 511/Math 562, Section 1, Fall 2007 102

and let θ′ = αθ. Then (x̄, π̄, s̄) is a β = 1
5 -approximate solution of P (θ′).

Proof: The triplet (x̄, π̄, s̄) satisfies Ax̄ = b, x̄ > 0, and AT π̄ + s̄ = c, and so it remains to show
that ∥∥∥∥ 1

θ′
X̄s̄− e

∥∥∥∥ ≤ 1

5
.

We have ∥∥∥∥ 1

θ′
X̄s̄− e

∥∥∥∥ =

∥∥∥∥ 1

αθ
X̄s̄− e

∥∥∥∥ =

∥∥∥∥ 1

α

(
1

θ
X̄s̄− e

)
−
(

1− 1

α

)
e

∥∥∥∥
≤
(

1

α

)∥∥∥∥1

θ
X̄s̄− e

∥∥∥∥+

∣∣∣∣1− αα
∣∣∣∣ ‖e‖

≤
3
40

α
+

(
1− α
α

)√
n =

3
40 +

√
n

α
−
√
n =

1

5
.

Theorem 89 (Convergence Theorem). Suppose that (x0, π0, s0) is a β = 3
40 -approximate so-

lution of P (θ0). Then for all k = 1, 2, 3, . . ., (xk, πk, sk) is a β = 3
40 -approximate solution of P (θk).

Proof: By induction, suppose that the theorem is true for iterates 0, 1, 2, ..., k.

Then (xk, πk, sk) is a β = 3
40 -approximate solution of P (θk). From the Relaxation Theorem,

(xk, πk, sk) is a 1
5 -approximate solution of P (θk+1) where θk+1 = αθk.

From the Quadratic Convergence Theorem, (xk+1, πk+1, sk+1) is a β-approximate solution of P (θk+1)
for

β =
1 + 1

5(
1− 1

5

)2 (1

5

)2

=
3

40
.

Therefore, by induction, the theorem is true for all values of k.

Figure 4 shows a better picture of the algorithm.

Theorem 90 (Complexity Theorem) Suppose that (x0, π0, s0) is a β = 3
40 -approximate solu-

tion of P (θ0). In order to obtain primal and dual feasible solutions (xk, πk, sk) with a duality gap
of at most ε, one needs to run the algorithm for at most

k =

⌈
10
√
n ln

(
43

37

(x0)T s0

ε

)⌉
iterations.

Proof: Let k be as defined above. Note that

α = 1−
1
8

1
5 +
√
n

= 1− 1(
8
5 + 8

√
n
) ≤ 1− 1

10
√
n
.

Therefore

θk ≤
(

1− 1

10
√
n

)k
θ0.

This implies that

cTxk − bTπk = (xk)T sk ≤ θkn(1 + β) ≤
(

1− 1

10
√
n

)k (43

40
n

)
θ0

IOE 511/Math 562, Section 1, Fall 2007 103

! = 90

! = 100

! = 80

x~

x
_

x̂

Figure 4: Another picture of the interior-point algorithm.

≤
(

1− 1

10
√
n

)k (43

40
n

)(
(x0)T s0

37
40n

)
,

from (37). Taking logarithms, we obtain

ln(cTxk − bTπk) ≤ k ln

(
1− 1

10
√
n

)
+ ln

(
43

37
(x0)T s0

)

≤ −k
10
√
n

+ ln

(
43

37
(x0)T s0

)
≤ − ln

(
43

37

(x0)T s0

ε

)
+ ln

(
43

37
(x0)T s0

)
= ln(ε).

The second inequality uses the fact that ln(1 − t) ≤ −t for all t < 1. Therefore cTxk − bTπk ≤ ε.

15.5 An implementable primal-dual interior-point algorithm

Herein we describe a more implementable primal-dual interior-point algorithm. This algorithm
differs from the previous method in the following respects:

• We do not assume that the current point is near the central path. In fact, we do not assume
that the current point is even feasible.

IOE 511/Math 562, Section 1, Fall 2007 104

• The fractional decrease parameter α is set to α = 1
10 rather than the conservative value of

α = 1−
1
8

1
5 +
√
n
.

• We do not necessarily take the full Newton step at each iteration, and we take different
step-sizes in the primal and dual.

Our current “point” is (x̄, π̄, s̄) for which x̄ > 0 and s̄ > 0, but quite possibly Ax̄ 6= b and/or
AT π̄ + s̄ 6= c. We are given a value of the central path barrier parameter θ > 0. We want
to compute a direction (∆x,∆π,∆s) so that (x̄ + ∆x, π̄ + ∆π, s̄ + ∆s) approximately solves the
central path equations. We set up the system:

(1) A(x̄+ ∆x) = b
(2) AT (π̄ + ∆π) + (s̄+ ∆s) = c
(3) (X̄ + ∆X)(S̄ + ∆S)e = θe.

We linearize this system of equations and rearrange the terms to obtain the Newton equations for
the current point (x̄, π̄, s̄):

(1) A∆x = b−Ax̄ =: r1

(2) AT∆π + ∆s = c−AT π̄ − s̄ =: r2

(3) S̄∆x+ X̄∆s = θe− X̄S̄e =: r3

We refer to the solution (∆x,∆π,∆s) to the above system as the primal-dual Newton direction
at the point (x̄, π̄, s̄). It differs from that derived earlier only in that earlier it was assumed that
r1 = 0 and r2 = 0.

Given our current point (x̄, π̄, s̄) and a given value of θ, we compute the Newton direction (∆x,∆π,∆s)
and we update our variables by choosing primal and dual step-sizes αP and αD to obtain new val-
ues:

(x̃, π̃, s̃)← (x̄+ αP∆x, π̄ + αD∆π, s̄+ αD∆s).

In order to ensure that x̃ > 0 and s̃ > 0, we choose a value of r satisfying 0 < r < 1 (r = 0.99 is a
common value in practice), and determine αP and αD as follows:

αP = min

{
1, r min

∆xj<0

{
x̄j
−∆xj

}}
αD = min

{
1, r min

∆sj<0

{
s̄j
−∆sj

}}
.

These step-sizes ensure that the next iterate (x̃, π̃, s̃) satisfies x̃ > 0 and s̃ > 0.

IOE 511/Math 562, Section 1, Fall 2007 105

15.5.1 Decreasing the Path Parameter θ

We also want to shrink θ at each iteration, in order to (hopefully) shrink the duality gap. The
current iterate is (x̄, π̄, s̄), and the current values satisfy:

θ ≈ x̄T s̄

n

We then re-set θ to

θ ←
(

1

10

)(
x̄T s̄

n

)
,

where the fractional decrease 1
10 is user-specified.

15.5.2 The Stopping Criterion

We typically declare the problem solved when it is “almost” primal feasible, “almost” dual feasible,
and there is “almost” no duality gap. We set our tolerance ε to be a small positive number, typically
ε = 10−8, for example, and we stop when:

(1) ‖Ax̄− b‖ ≤ ε
(2) ‖AT π̄ + s̄− c‖ ≤ ε
(3) s̄T x̄ ≤ ε

15.5.3 The Full Interior-Point Algorithm

1. Given (x0, π0, s0) satisfying x0 > 0, s0 > 0, and θ0 > 0, and r satisfying 0 < r < 1, and ε > 0.
Set k ← 0.

2. Test stopping criterion. Check if:

(1) ‖Axk − b‖ ≤ ε
(2) ‖ATπk + sk − c‖ ≤ ε
(3) (sk)Txk ≤ ε.

If so, STOP. If not, proceed.

3. Set θ ←
(

1

10

)(
(xk)T (sk)

n

)
4. Solve the Newton equation system:

(1) A∆x = b−Axk =: r1

(2) AT∆π + ∆s = c−ATπk − sk =: r2

(3) Sk∆x+Xk∆s = θe−XkSke =: r3

5. Determine the step-sizes:

θP = min

{
1, r min

∆xj<0

{
xkj
−∆xj

}}

θD = min

{
1, r min

∆sj<0

{
skj
−∆sj

}}
.

IOE 511/Math 562, Section 1, Fall 2007 106

6. Update values:

(xk+1, πk+1, sk+1) ← (xk + αP∆x, πk + αD∆π, sk + αD∆s).

Re-set k ← k + 1 and return to (b).

15.5.4 Remarks on interior-point methods

• The algorithm just described is almost exactly what is used in commercial interior-point
method software.

• A typical interior-point code will solve a linear or quadratic optimization problem in 25-80
iterations, regardless of the dimension of the problem.

• These days, interior-point methods have been extended to allow for the solution of a very
large class of convex nonlinear optimization problems.

IOE 511/Math 562, Section 1, Fall 2007 107

16 Introduction to Semidefinite Programming (SDP)

16.1 Introduction

Semidefinite programming (SDP) is probably the most exciting development in mathematical
programming in the last ten years. SDP has applications in such diverse fields as traditional
convex constrained optimization, control theory, and combinatorial optimization. Because SDP is
solvable via interior-point methods (and usually requires about the same amount of computational
resources as linear optimization), most of these applications can usually be solved fairly efficiently
in practice as well as in theory.

16.2 A slightly different view of linear programming

Consider the linear programming problem in standard form:

LP : minimize c · x
s.t. ai · x = bi, i = 1, . . . ,m

x ∈ Rn+.

Here x is a vector of n variables, and we write “c ·x” for the inner-product “
∑n

j=1 cjxj”, etc.

Also, Rn+ := {x ∈ Rn | x ≥ 0}, and we call Rn+ the nonnegative orthant. In fact, Rn+ is a closed convex
cone, where K is called a closed a convex cone if K satisfies the following two conditions:

• If x,w ∈ K, then αx+ βw ∈ K for all nonnegative scalars α and β.

• K is a closed set.

In words, LP is the following problem:

“Minimize the linear function c · x, subject to the condition that x must solve m given equations
ai · x = bi, i = 1, . . . ,m, and that x must lie in the closed convex cone K = Rn+.”

We will write the standard linear programming dual problem as:

LD : maximize
m∑
i=1

yibi

s.t.
m∑
i=1

yiai + s = c

s ∈ Rn+.

Given a feasible solution x of LP and a feasible solution (y, s) of LD, the duality gap is simply
c · x −

∑m
i=1 yibi = (c −

∑m
i=1 yiai) · x = s · x ≥ 0, because x ≥ 0 and s ≥ 0. We know from LP

duality theory that so long as the primal problem LP is feasible and has bounded optimal objective
value, then the primal and the dual both attain their optima with no duality gap. That is, there
exists x∗ and (y∗, s∗) feasible for the primal and dual, respectively, for which c · x∗ −

∑m
i=1 y

∗
i bi =

s∗ · x∗ = 0.

IOE 511/Math 562, Section 1, Fall 2007 108

16.3 Facts about matrices and the semidefinite cone

16.3.1 Facts about the semidefinite cone

If X is an n × n matrix, then X is a symmetric positive semidefinite (SPSD) matrix if X = XT

and
vTXv ≥ 0 for any v ∈ Rn.

If X is an n×n matrix, then X is a symmetric positive definite (SPD) matrix if X = XT and

vTXv > 0 for any v ∈ Rn, v 6= 0.

Let Sn denote the set of symmetric n×n matrices, and let Sn+ denote the set of symmetric positive
semidefinite (SPSD) n×n matrices. Similarly let Sn++ denote the set of symmetric positive definite
(SPD) n× n matrices.

Let X and Y be any symmetric matrices. We write “X � 0” to denote that X is SPSD, and we
write “X � Y ” to denote that X − Y � 0. We write “X � 0” to denote that X is SPD, etc.

Sn+ = {X ∈ Sn | X � 0} is a closed convex cone in Rn2
of dimension n× (n+ 1)/2.

To see why this remark is true, suppose that X,W ∈ Sn+. Pick any scalars α, β ≥ 0. For any
v ∈ Rn, we have:

vT (αX + βW)v = αvTXv + βvTWv ≥ 0,

whereby αX + βW ∈ Sn+. This shows that Sn+ is a cone. It is also straightforward to show that Sn+
is a closed set.

16.3.2 Facts about eigenvalues and eigenvectors

If M is a square n × n matrix, then λ is an eigenvalue of M with corresponding eigenvector x
if

Mx = λx and x 6= 0.

Note that λ is an eigenvalue of M if and only if λ is a root of the polynomial:

p(λ) := det(M − λI),

that is
p(λ) = det(M − λI) = 0.

This polynomial will have n roots counting multiplicities, that is, there exist λ1, λ2, . . . , λn for
which:

p(λ) := det(M − λI) = Πn
i=1 (λi − λ) .

If M is symmetric, then all eigenvalues λ of M must be real numbers, and these eigenvalues can
be ordered so that λ1 ≥ λ2 ≥ · · · ≥ λn if we so choose.

The corresponding eigenvectores q1, . . . , qn of M can be chosen so that they are orthogonal, namely(
qi
)T (

qj
)

= 0 for i 6= j, and can be scaled so that
(
qi
)T (

qi
)

= 1. This means that the matrix:

Q :=
[
q1 q2 · · · qn

]

IOE 511/Math 562, Section 1, Fall 2007 109

satisfies:
QTQ = I,

or put another way:
QT = Q−1.

We call such a matrix orthonormal.

Let us assemble the ordered eigenvalues λ1, λ2, . . . , λn into a diagonal matrix D:

D :=

λ1 0 0
0 λ2 0

. . .

0 λn

 .

Then we have:

Property: M = QDQT . To prove this, notice that MQ = QD, and so post-multiplying by QT

yields: M = MQQT = QDQT .

The decomposition of M into M = QDQT is called its eigendecomposition.

16.3.3 Facts about symmetric matrices

• If X ∈ Sn, then X = QDQT for some orthonormal matrix Q and some diagonal matrix D.
(Recall that Q is orthonormal means that Q−1 = QT , and that D is diagonal means that the
off-diagonal entries of D are all zeros.)

• If X = QDQT as above, then the columns of Q form a set of n orthogonal eigenvectors of X,
whose eigenvalues are the corresponding entries of the diagonal matrix D.

• X � 0 if and only if X = QDQT where the eigenvalues (i.e., the diagonal entries of D) are
all nonnegative.

• X � 0 if and only if X = QDQT where the eigenvalues (i.e., the diagonal entries of D) are
all positive.

• If M is symmetric, then det(M) = Πn
j=1λj .

• If X � 0 then Xii ≥ 0, i = 1, . . . , n.

• If X � 0 and if Xii = 0, then Xij = Xji = 0 for all j = 1, . . . , n.

• Consider the matrix M defined as follows:

M =

(
P v
vT d

)
,

where P � 0, v is a vector, and d is a scalar. Then M � 0 if and only if d− vTP−1v ≥ 0.

• For a given column vector a, the matrix X := aaT is SPSD, i.e., X = aaT � 0.

Also note the following:

• If M � 0, then there is a matrix N for which M = NTN . To see this, simply take N = D
1
2QT .

• If M is symmetric, then
∑n

j=1Mjj =
∑n

j=1 λj

IOE 511/Math 562, Section 1, Fall 2007 110

16.4 Semidefinite programming

Let X ∈ Sn. We can think of X as a matrix, or equivalently, as an array of n2 components of the
form (x11, . . . , xnn). We can also just think of X as an object (a vector) in the space Sn. All three
different equivalent ways of looking at X will be useful.

What will a linear function of X look like? If C(X) is a linear function of X, then C(X) can be
written as C •X, where

C •X :=
n∑
i=1

n∑
j=1

CijXij .

If X is a symmetric matrix, there is no loss of generality in assuming that the matrix C is also
symmetric. With this notation, we are now ready to define a semidefinite program. A semidefinite
program (SDP) is an optimization problem of the form:

SDP : minimize C •X
s.t. Ai •X = bi, i = 1, . . . ,m,

X � 0.

Notice that in an SDP that the variable is the matrix X, but it might be helpful to think of X as
an array of n2 numbers or simply as a vector in Sn. The objective function is the linear function
C •X and there are m linear equations that X must satisfy, namely Ai •X = bi, i = 1, . . . ,m. The
variable X also must lie in the (closed convex) cone of positive semidefinite symmetric matrices
Sn+. Note that the data for SDP consists of the symmetric matrix C (which is the data for the
objective function) and the m symmetric matrices A1, . . . , Am, and the m−vector b, which form
the m linear equations.

Let us see an example of an SDP for n = 3 and m = 2. Define the following matrices:

A1 =

1 0 1
0 3 7
1 7 5

 , A2 =

0 2 8
2 6 0
8 0 4

 , b =

(
11
19

)
, and C =

1 2 3
2 9 0
3 0 7

 .

Then the variable X will be the 3× 3 symmetric matrix:

X =

x11 x12 x13

x21 x22 x23

x31 x32 x33

 ,

and so, for example,

C •X = x11 + 2x12 + 3x13 + 2x21 + 9x22 + 0x23 + 3x31 + 0x32 + 7x33

= x11 + 4x12 + 6x13 + 9x22 + 0x23 + 7x33.

since, in particular, X is symmetric. Therefore the SDP can be written as:

SDP : minimize x11 + 4x12 + 6x13 + 9x22 + 0x23 + 7x33

s.t. x11 + 0x12 + 2x13 + 3x22 + 14x23 + 5x33 = 11
0x11 + 4x12 + 16x13 + 6x22 + 0x23 + 4x33 = 19

X =

x11 x12 x13

x21 x22 x23

x31 x32 x33

 � 0.

IOE 511/Math 562, Section 1, Fall 2007 111

Notice that SDP looks remarkably similar to a linear program. However, the standard LP con-
straint that x must lie in the nonnegative orthant is replaced by the constraint that the variable
X must lie in the cone of positive semidefinite matrices. Just as “x ≥ 0” states that each of the n
components of x must be nonnegative, it may be helpful to think of “X � 0” as stating that each
of the n eigenvalues of X must be nonnegative. It is easy to see that a linear program LP is a
special instance of an SDP . To see one way of doing this, suppose that (c, a1, . . . , am, b1, . . . , bm)
comprise the data for LP . Then define:

Ai =

ai1 0 . . . 0
0 ai2 . . . 0
...

...
. . .

...
0 0 . . . ain

 , i = 1, . . . ,m, and C =

c1 0 . . . 0
0 c2 . . . 0
...

...
. . .

...
0 0 . . . cn

 .

Then LP can be written as:

SDP : minimize C •X
s.t. Ai •X = bi, i = 1, . . . ,m,

Xij = 0, i = 1, . . . , n, j = i+ 1, . . . , n,
X � 0,

with the association that

X =

x1 0 . . . 0
0 x2 . . . 0
...

...
. . .

...
0 0 . . . xn

 .

Of course, in practice one would never want to convert an instance of LP into an instance of
SDP . The above construction merely shows that SDP includes linear programming as a special
case.

16.5 Semidefinite programming duality

The dual problem of SDP is defined (or derived from first principles) to be:

SDD : maximize
m∑
i=1

yibi

s.t.
m∑
i=1

yiAi + S = C

S � 0.

One convenient way of thinking about this problem is as follows. Given multipliers y1, . . . , ym,
the objective is to maximize the linear function

∑m
i=1 yibi. The constraints of SDD state that the

matrix S defined as

S = C −
m∑
i=1

yiAi

must be positive semidefinite. That is,

C −
m∑
i=1

yiAi � 0.

IOE 511/Math 562, Section 1, Fall 2007 112

We illustrate this construction with the example presented earlier. The dual problem is:

SDD : maximize 11y1 + 19y2

s.t. y1

1 0 1
0 3 7
1 7 5

+ y2

0 2 8
2 6 0
8 0 4

+ S =

1 2 3
2 9 0
3 0 7

S � 0,

which we can rewrite in the following form:

SDD : maximize 11y1 + 19y2

s.t. 1− 1y1 − 0y2 2− 0y1 − 2y2 3− 1y1 − 8y2

2− 0y1 − 2y2 9− 3y1 − 6y2 0− 7y1 − 0y2

3− 1y1 − 8y2 0− 7y1 − 0y2 7− 5y1 − 4y2

 � 0.

It is often easier to “see” and to work with a semidefinite program when it is presented in the
format of the dual SDD, since the variables are the m multipliers y1, . . . , ym.

As in linear programming, we can switch from one format of SDP (primal or dual) to any other
format with great ease, and there is no loss of generality in assuming a particular specific format
for the primal or the dual.

The following proposition states that weak duality must hold for the primal and dual of SDP :

Proposition 91 Given a feasible solution X of SDP and a feasible solution (y, S) of SDD, the
duality gap is C • X −

∑m
i=1 yibi = S • X ≥ 0. If C • X −

∑m
i=1 yibi = 0, then X and (y, S) are

each optimal solutions to SDP and SDD, respectively, and furthermore, SX = 0.

In order to prove Proposition 91, it will be convenient to work with the trace of a matrix, defined
below:

trace(M) =
n∑
j=1

Mjj .

Simple arithmetic can be used to establish the following two elementary identifies:

Property: A • B = trace(ATB). To prove this, notice that trace(ATB) =
∑n

j=1

(
ATB

)
jj

=∑n
j=1 (

∑n
i=1AijBij) = A •B.

Property: trace(MN) = trace(NM). To prove this, simply notice that trace(MN) = MT •N =∑n
i=1

∑n
j=1MjiNij =

∑n
i=1

∑n
j=1NijMji =

∑n
i=1

∑n
j=1NjiMij = NT •M = trace(NM).

Proof of Proposition 91. For the first part of the proposition, we must show that if S � 0 and
X � 0, then S • X ≥ 0. Let S = PDP T and X = QEQT where P,Q are orthonormal matrices
and D,E are nonnegative diagonal matrices. We have:

S •X = trace(STX) = trace(SX) = trace(PDP TQEQT)

= trace(DP TQEQTP) =

n∑
j=1

Djj(P
TQEQTP)jj ≥ 0,

IOE 511/Math 562, Section 1, Fall 2007 113

where the last inequality follows from the fact that all Djj ≥ 0 and the fact that the diagonal of
the symmetric positive semidefinite matrix P TQEQTP must be nonnegative.

To prove the second part of the proposition, suppose that trace(SX) = 0. Then from the above
equalities, we have

n∑
j=1

Djj(P
TQEQTP)jj = 0.

However, this implies that for each j = 1, . . . , n, either Djj = 0 or the (P TQEQTP)jj = 0.
Furthermore, the latter case implies that the jth row of P TQEQTP is all zeros. Therefore
DP TQEQTP = 0, and so SX = PDP TQEQT = 0.

Unlike the case of linear programming, we cannot assert that either SDP or SDD will attain their
respective optima, and/or that there will be no duality gap, unless certain regularity conditions
hold. One such regularity condition which ensures that strong duality will prevail is a version of
the “Slater condition,” summarized in the following theorem which we will not prove:

Theorem 92 Let z∗P and z∗D denote the optimal objective function values of SDP and SDD,

respectively. Suppose that there exists a feasible solution X̂ of SDP such that X̂ � 0, and that
there exists a feasible solution (ŷ, Ŝ) of SDD such that Ŝ � 0. Then both SDP and SDD attain
their optimal values, and z∗P = z∗D.

16.6 Key properties of linear programming that do not extend to SDP

The following summarizes some of the more important properties of linear programming that do
not extend to SDP :

• There may be a finite or infinite duality gap. The primal and/or dual may or may not
attain their optima. However, as noted above in Theorem 92, both programs will attain their
common optimal value if both programs have feasible solutions that are SPD.

• There is no finite algorithm for solving SDP . There is a simplex algorithm, but it is not a
finite algorithm. There is no direct analog of a “basic feasible solution” for SDP .

16.7 SDP in combinatorial optimization

SDP has wide applicability in combinatorial optimization. A number of NP−hard combinatorial
optimization problems have convex relaxations that are semidefinite programs. In many instances,
the SDP relaxation is very tight in practice, and in certain instances in particular, the optimal
solution to the SDP relaxation can be converted to a feasible solution for the original problem
with provably good objective value. An example of the use of SDP in combinatorial optimization
is given below.

16.7.1 An SDP relaxation of the MAX CUT problem

Let G be an undirected graph with nodes N = {1, . . . , n}, and edge set E. Let wij = wji be the
weight on edge (i, j), for (i, j) ∈ E. We assume that wij ≥ 0 for all (i, j) ∈ E. The MAX CUT

IOE 511/Math 562, Section 1, Fall 2007 114

problem is to determine a subset S of the nodes N for which the sum of the weights of the edges
that cross from S to its complement S̄ is maximized (where S̄ := N \ S).

We can formulate MAX CUT as an integer program as follows. Let xj = 1 for j ∈ S and xj = −1
for j ∈ S̄. Then our formulation is:

MAXCUT : maximizex
1
4

n∑
i=1

n∑
j=1

wij(1− xixj)

s.t. xj ∈ {−1, 1}, j = 1, . . . , n.

Now let
Y = xxT ,

whereby
Yij = xixj , i = 1, . . . , n, j = 1, . . . , n.

Also let W be the matrix whose (i, j)th element is wij for i = 1, . . . , n and j = 1, . . . , n. Then MAX
CUT can be equivalently formulated as:

MAXCUT : maximizeY,x
1
4

n∑
i=1

n∑
j=1

wij − 1
4W • Y

s.t. xj ∈ {−1, 1}, j = 1, . . . , n
Y = xxT .

Notice in this problem that the first set of constraints are equivalent to Yjj = 1, j = 1, . . . , n. We
therefore obtain:

MAXCUT : maximizeY,x
1
4

n∑
i=1

n∑
j=1

wij − 1
4W • Y

s.t. Yjj = 1, j = 1, . . . , n
Y = xxT .

Last of all, notice that the matrix Y = xxT is a symmetric rank-1 positive semidefinite matrix.
If we relax this condition by removing the rank-1 restriction, we obtain the following relaxtion of
MAX CUT, which is a semidefinite program:

RELAX : maximizeY
1
4

n∑
i=1

n∑
j=1

wij − 1
4W • Y

s.t. Yjj = 1, j = 1, . . . , n
Y � 0.

It is therefore easy to see that RELAX provides an upper bound on MAXCUT, i.e.,

MAXCUT ≤ RELAX.

As it turns out, one can also prove without too much effort that:

0.87856 RELAX ≤MAXCUT ≤ RELAX.

This is an impressive result, in that it states that the value of the semidefinite relaxation is guar-
anteed to be no more than 12.2% higher than the value of NP -hard problem MAX CUT.

IOE 511/Math 562, Section 1, Fall 2007 115

16.8 SDP in convex optimization

As stated above, SDP has very wide applications in convex optimization. The types of constraints
that can be modelled in the SDP framework include: linear inequalities, convex quadratic in-
equalities, lower bounds on matrix norms, lower bounds on determinants of SPSD matrices, lower
bounds on the geometric mean of a nonnegative vector, plus many others. Using these and other
constructions, the following problems (among many others) can be cast in the form of a semidefi-
nite program: linear programming, optimizing a convex quadratic form subject to convex quadratic
inequality constraints, minimizing the volume of an ellipsoid that covers a given set of points and
ellipsoids, maximizing the volume of an ellipsoid that is contained in a given polytope, plus a variety
of maximum eigenvalue and minimum eigenvalue problems. In the subsections below we demon-
strate how some important problems in convex optimization can be re-formulated as instances of
SDP .

16.8.1 SDP for convex quadratically constrained quadratic programming

A convex quadratically constrained quadratic program is a problem of the form:

QCQP : minimize xTQ0x+ qT0 x+ c0

x
s.t. xTQix+ qTi x+ ci ≤ 0, i = 1, . . . ,m,

where the Q0 � 0 and Qi � 0, i = 1, . . . ,m. This problem is the same as:

QCQP : minimize θ
x, θ
s.t. xTQ0x+ qT0 x+ c0 − θ ≤ 0

xTQix+ qTi x+ ci ≤ 0, i = 1, . . . ,m.

We can factor each Qi into
Qi = MT

i Mi

for some matrix Mi. Then note the equivalence:(
I Mix

xTMT
i −ci − qTi x

)
� 0 ⇐⇒ xTQix+ qTi x+ ci ≤ 0.

In this way we can write QCQP as:

QCQP : minimize θ
x, θ
s.t. (

I M0x
xTMT

0 −c0 − qT0 x+ θ

)
� 0(

I Mix
xTMT

i −ci − qTi x

)
� 0, i = 1, . . . ,m.

Notice in the above formulation that the variables are θ and x and that all matrix coefficients are
linear functions of θ and x.

IOE 511/Math 562, Section 1, Fall 2007 116

16.8.2 SDP for second-order cone optimization

A second-order cone optimization problem (SOCP) is an optimization problem of the form:

SOCP: minx cTx
s.t. Ax = b

‖Qix+ di‖ ≤
(
gTi x+ hi

)
, i = 1, . . . , k.

In this problem, the norm ‖v‖ is the standard Euclidean norm:

‖v‖ :=
√
vT v.

The norm constraints in SOCP are called “second-order cone” constraints. Note that these are
convex constraints.

Here we show that any second-order cone constraint can be written as an SDP constraint. Indeed
we have:

Property:

‖Qx+ d‖ ≤
(
gTx+ h

)
⇐⇒

(
(gTx+ h)I (Qx+ d)
(Qx+ d)T gTx+ h

)
� 0.

Note in the above that the matrix involved here is a linear function of the variable x, and so is in
the general form of an SDP constraint. This property is a direct consequence of the fact (stated
earlier) that

M =

(
P v
vT d

)
� 0 ⇐⇒ d− vTP−1v ≥ 0.

Therefore we can write the second-order cone optimization problem as:

SDPSOCP: minx cTx
s.t. Ax = b(

(gTi x+ hi)I (Qix+ di)
(Qix+ di)

T gTi x+ hi

)
� 0 , i = 1, . . . , k.

16.8.3 SDP for eigenvalue optimization

There are many types of eigenvalue optimization problems that can be formulated as SDP s. In a
typical eigenvalue optimization problem, we are given symmetric matrices B and Ai, i = 1, . . . , k,
and we choose weights w1, . . . , wk to create a new matrix S:

S := B −
k∑
i=1

wiAi.

In some applications there might be restrictions on the weights w, such as w ≥ 0 or more generally
linear inequalities of the form Gw ≤ d. The typical goal is then to choose w in such a way that the
eigenvalues of S are “well-aligned,” for example:

• λmin(S) is maximized

• λmax(S) is minimized

IOE 511/Math 562, Section 1, Fall 2007 117

• λmax(S)− λmin(S) is minimized

•
∑n

j=1 λj(S) is minimized or maximized

Let us see how to work with these problems using SDP . First, we have:

Property: M � tI if and only if λmin(M) ≥ t.

To see why this is true, let us consider the eigenvalue decomposition of M = QDQT , and consider
the matrix R defined as:

R = M − tI = QDQT − tI = Q(D − tI)QT .

Then
M � tI ⇐⇒ R � 0 ⇐⇒ D − tI � 0 ⇐⇒ λmin(M) ≥ t.

Property: M � tI if and only if λmax(M) ≤ t.

To see why this is true, let us consider the eigenvalue decomposition of M = QDQT , and consider
the matrix R defined as:

R = M − tI = QDQT − tI = Q(D − tI)QT .

Then
M � tI ⇐⇒ R � 0 ⇐⇒ D − tI � 0 ⇐⇒ λmax(M) ≤ t.

Now suppose that we wish to find weights w to minimize the difference between the largest and
the smallest eigenvalues of S. This problem can be written down as:

EOP : minimize λmax(S)− λmin(S)
w, S

s.t. S = B −
k∑
i=1

wiAi

Gw ≤ d.

Then EOP can be written as:

EOP : minimize µ− λ
w, S, µ, λ

s.t. S = B −
k∑
i=1

wiAi

Gw ≤ d
λI � S � µI.

This last problem is a semidefinite program.

Using constructs such as those shown above, very many other types of eigenvalue optimization
problems can be formulated as SDP s. For example, suppose that we would like to work with∑n

j=1 λj(S). Then one can use elementary properties of the determinant function to prove:

Property: If M is symmetric, then
∑n

j=1 λj(S) =
∑n

j=1Mjj .

IOE 511/Math 562, Section 1, Fall 2007 118

Then we can work with
∑n

j=1 λj(S) by using instead I • S. Therefore enforcing a constraint that
the sum of the eigenvalues must lie between l and u can be written as:

EOP2 : minimize µ− λ
w, S, µ, λ

s.t. S = B −
k∑
i=1

wiAi

Gw ≤ d
λI � S � µI
l ≤ I • S ≤ u.

This last problem is a semidefinite program.

16.8.4 The logarithmic barrier function

At the heart of an interior-point method is a barrier function that exerts a repelling force from the
boundary of the feasible region. For SDP , we need a barrier function whose values approach +∞
as points X approach the boundary of the semidefinite cone Sn+.

Let X ∈ Sn+. Then X will have n eigenvalues, say λ1(X), . . . , λn(X) (possibly counting multiplici-
ties). We can characterize the boundary of the semidefinite cone as follows:

∂Sn+ = {X ∈ Sn | λj(X) ≥ 0, j = 1, . . . , n, and λj(X) = 0 for some j ∈ {1, . . . , n}}.

A natural barrier function to use to repel X from the boundary of Sn+ then is

B(X) := −
n∑
j=1

ln(λi(X)) = − ln(
n∏
j=1

λi(X)) = − ln(det(X)).

This function is called the log-determinant function or the logarithmic barrier function for the
semidefinite cone. It is not too difficult to derive the gradient and the Hessian of B(X) and to
construct the following quadratic Taylor expansion of B(X) :

B(X̄ + αS) ≈ B(X̄) + αX̄−1 • S +
1

2
α2
(
X̄−

1
2SX̄−

1
2

)
•
(
X̄−

1
2SX̄−

1
2

)
.

The barrier function B(X) has the same remarkable properties in the context of interior-point
methods for SDP as the barrier function −

∑n
j=1 ln(xj) does in the context of linear optimiza-

tion.

16.8.5 The analytic center problem for SDP

Just as in linear optimization, we can consider the analytic center problem for SDP . Given a
system of the form:

m∑
i=1

yiAi � C,

IOE 511/Math 562, Section 1, Fall 2007 119

x̂
P

Eout

Ein

Figure 5: Illustration of the ellipsoid construction at the analytic center.

the analytic center is the solution (ŷ, Ŝ) of the following optimization problem:

(ACP:) maximizey,S
n∏
i=1

λi(S)

s.t.
∑m

i=1 yiAi + S = C
S � 0.

This is easily seen to be the same as:

(ACP:) minimizey,S − ln det(S)
s.t.

∑m
i=1 yiAi + S = C

S � 0.

Just as in linear inequality systems, the analytic center possesses a very nice “centrality” property
in the feasible region P of the semi-definite inequality system. Suppose that (ŷ, Ŝ) is the analytic
center. Then there are easy-to-construct ellipsoids EIN and EOUT, both centered at ŷ and where
EOUT is a scaled version of EIN with scale factor n, with the property that:

EIN ⊂ P ⊂ EOUT,

as illustrated in Figure 5.

16.8.6 SDP for the minimum volume circumscription problem

A given matrix R � 0 and a given point z can be used to define an ellipsoid in Rn:

ER,z := {y | (y − z)TR(y − z) ≤ 1}.

One can prove that the volume of ER,z is proportional to
√

det(R−1).

Suppose we are given a convex set X ∈ Rn described as the convex hull of k points c1, . . . , ck. We
would like to find an ellipsoid circumscribing these k points that has minimum volume, see Figure
6.

IOE 511/Math 562, Section 1, Fall 2007 120

Figure 6: Illustration of the circumscribed ellipsoid problem.

Our problem can be written in the following form:

MCP : minimize vol (ER,z)
R, z
s.t. ci ∈ ER,z, i = 1, . . . , k,

which is equivalent to:

MCP : minimize − ln(det(R))
R, z
s.t. (ci − z)TR(ci − z) ≤ 1, i = 1, . . . , k

R � 0,

Now factor R = M2 where M � 0 (that is, M is a square root of R), and now MCP becomes:

MCP : minimize − ln(det(M2))
M, z
s.t. (ci − z)TMTM(ci − z) ≤ 1, i = 1, . . . , k,

M � 0.

Next notice the equivalence:(
I Mci −Mz

(Mci −Mz)T 1

)
� 0 ⇐⇒ (ci − z)TMTM(ci − z) ≤ 1

In this way we can write MCP as:

MCP : minimize −2 ln(det(M))
M, z

s.t.

(
I Mci −Mz

(Mci −Mz)T 1

)
� 0, i = 1, . . . , k,

M � 0.

Last of all, make the substitution y = Mz to obtain:

MCP : minimize −2 ln(det(M))
M,y

s.t.

(
I Mci − y

(Mci − y)T 1

)
� 0, i = 1, . . . , k,

M � 0.

IOE 511/Math 562, Section 1, Fall 2007 121

Notice that this last program involves semidefinite constraints where all of the matrix coefficients
are linear functions of the variables M and y. The objective function is the logarithmic barrier
function − ln(det(M)). As discussed earlier, this function has the same remarkable properties as
the logarithmic barrier function −

∑n
j=1 ln(xj) does for linear optimization, and optimization of

this function using Newton’s method is extremely easy.

Finally, note that after solving the formulation of MCP above, we can recover the matrix R and
the center z of the optimal ellipsoid by computing

R = M2 and z = M−1y.

16.9 SDP in control theory

A variety of control and system problems can be cast and solved as instances of SDP . However,
this topic is beyond the scope of these notes.

16.10 Interior-point methods for SDP

The primal and dual SDP problems are:

SDP : minimize C •X
s.t. Ai •X = bi, i = 1, . . . ,m,

X � 0,

and

SDD : maximize
m∑
i=1

yibi

s.t.
m∑
i=1

yiAi + S = C

S � 0.

If X and (y, S) are feasible for the primal and the dual, the duality gap is:

C •X −
m∑
i=1

yibi = S •X ≥ 0.

Also,
S •X = 0 ⇐⇒ SX = 0.

Interior-point methods for semidefinite optimization are based on the logarithmic barrier func-
tion:

B(X) = −
n∑
j=1

ln(λi(X)) = − ln(

n∏
j=1

λi(X)) = − ln(det(X)).

Consider the logarithmic barrier problem BSDP (µ) parameterized by the positive barrier param-
eter µ:

BSDP (µ) : minimize C •X − µ ln(det(X))
s.t. Ai •X = bi, i = 1, . . . ,m,

X � 0.

IOE 511/Math 562, Section 1, Fall 2007 122

Let fµ(X) denote the objective function of BSDP (µ). Then it is not too difficult to derive:

−∇fµ(X) = C − µX−1,

and so the Karush-Kuhn-Tucker conditions for BSDP (µ) are:
Ai •X = bi, i = 1, . . . ,m,
X � 0,

C − µX−1 =
m∑
i=1

yiAi.

We can define
S = µX−1,

which implies
XS = µI,

and we can rewrite the Karush-Kuhn-Tucker conditions as:
Ai •X = bi, i = 1, . . . ,m,
X � 0
m∑
i=1

yiAi + S = C

XS = µI.

It follows that if (X, y, S) is a solution of this system, then X is feasible for SDP , (y, S) is feasible
for SDD, and the resulting duality gap is

S •X =
n∑
i=1

n∑
j=1

SijXij =
n∑
j=1

(SX)jj =
n∑
j=1

(µI)jj = nµ.

This suggests that we try solving BSDP (µ) for a variety of values of µ as µ→ 0.

Interior-point methods for SDP are very similar to those for linear optimization, in that they use
Newton’s method to solve the KKT system as µ→ 0.

16.11 Website for SDP

A good website for semidefinite programming is:

http://www-user.tu-chemnitz.de/ helmberg/semidef.html.

	Examples of nonlinear programming problems formulations
	Forms and components of a mathematical programming problems
	Markowitz portfolio optimization model
	Least squares problem (parameter estimation)
	Maximum likelihood estimation
	Cantilever beam design

	Calculus and analysis review
	Basic notions in optimization
	Types of optimization problems
	Constraints and feasible regions
	Types of optimal solutions
	Existence of solutions of optimization problems

	Optimality conditions for unconstrained problems
	Optimality conditions: the necessary and the sufficient
	Convexity and minimization

	Line search methods: one-dimensional optimization
	General optimization algorithm
	Stepsize selection
	A bisection algorithm for a line search of a convex function
	Armijo rule

	The steepest descent algorithm for unconstrained optimization
	The algorithm
	Global convergence

	Rate of convergence of steepest descent algorithm
	Properties of quadratic forms
	The rate of convergence of the steepest descent algorithm for the case of a quadratic function
	An example
	Proof of Kantorovich Inequality

	Newton's method for minimization
	Convergence analysis of Newton's method
	Rate of convergence
	Rate of convergence of the pure Newton's method

	Further discussion and modifications of the Newton's method
	Global convergence for strongly convex functions with a two-phase Newton's method
	Other modifications of the Newton's method

	Quasi-Newton (secant) methods
	The Broyden family
	BFGS method
	A final note

	Constrained optimization — optimality conditions
	Introduction
	Necessary Optimality Conditions: Geometric view
	Separation of convex sets
	First order optimality conditions
	``Algebraic'' necessary conditions
	Generalizations of convexity and first order necessary conditions
	Constraint qualifications, or when are necessary conditions really necessary?

	Second order conditions

	Linearly constrained problems and quadratic programming
	The gradient projection method for linear equality constrained problems
	Optimization over linear equality constraints
	Analysis of (DFP)
	Solving (DFPx)
	The Variable Metric Method

	Linear inequality constraints: manifold suboptimization methods
	Quadratic Programming

	Introduction to penalty methods for constrained optimization
	Karush-Kuhn-Tucker multipliers in penalty methods
	Exact penalty methods
	Augmented Lagrangian penalty function

	Successive quadratic programming (SQP)
	The basic SQP method
	Local convergence
	The Newton SQP method
	Quasi-Newton approximations

	Global convergence
	l1 (linear) penalty merit function
	Augmented Lagrangian merit function

	Some final issues

	Barrier Methods
	Karush-Kuhn-Tucker multipliers in barrier methods

	Duality theory of nonlinear programming
	The practical importance of duality
	Definition of the dual problem
	Problems with different formats of constraints

	Examples
	The dual of a linear program
	The dual of a binary integer program
	The dual of a quadratic problem
	Dual of a log-barrier problem

	Geometry of the dual
	Properties of the dual and weak duality
	Saddlepoint optimality criteria
	Strong duality for convex optimization problems
	Perturbation and sensitivity analysis
	Duality strategies
	Dualizing ``bad'' constraints
	Dualizing a large problem into many small problems

	A slight detour: subgradient optimization
	Review: separating hyperplane theorems
	Subgradients of convex functions
	Subgradient method for minimizing a convex function
	Subgradient method with projections

	Solution of the Lagrangian dual via subgradient optimization

	Primal-dual interior point methods for linear programming
	The problem
	The primal-dual algorithm
	The primal-dual Newton step
	Complexity analysis of the algorithm
	An implementable primal-dual interior-point algorithm
	Decreasing the Path Parameter
	The Stopping Criterion
	The Full Interior-Point Algorithm
	Remarks on interior-point methods

	Introduction to Semidefinite Programming (SDP)
	Introduction
	A slightly different view of linear programming
	Facts about matrices and the semidefinite cone
	Facts about the semidefinite cone
	Facts about eigenvalues and eigenvectors
	Facts about symmetric matrices

	Semidefinite programming
	Semidefinite programming duality
	Key properties of linear programming that do not extend to SDP
	SDP in combinatorial optimization
	An SDP relaxation of the MAX CUT problem

	SDP in convex optimization
	SDP for convex quadratically constrained quadratic programming
	SDP for second-order cone optimization
	SDP for eigenvalue optimization
	The logarithmic barrier function
	The analytic center problem for SDP
	SDP for the minimum volume circumscription problem

	SDP in control theory
	Interior-point methods for SDP
	Website for SDP

