- Identification of
core-periphery structure in networks, Xiao Zhang, Travis Martin, and
M. E. J. Newman, submitted to
*Phys. Rev. E*. - The small-world effect is a
modern phenomenon, Seth A. Marvel, Travis Martin, Charles R. Doering,
David Lusseau, and M. E. J. Newman, submitted to
*Proc. Natl. Acad. Sci. USA*. - Equitable random graphs,
M. E. J. Newman and Travis Martin,
*Phys. Rev. E*, in press. - Localization and centrality in
networks, Travis Martin, Xiao Zhang, and M. E. J. Newman,
*Phys. Rev. E*,**90**, 052808 (2014). - Percolation on sparse
networks, Brian Karrer, M. E. J. Newman, and Lenka Zdeborová,
*Phys. Rev. Lett.***113**, 208702 (2014). - First-principles multiway
spectral partitioning of graphs, Maria A. Riolo and M. E. J. Newman,
*Journal of Complex Networks***2**, 121-140 (2014). - Spectra of random graphs with
community structure and arbitrary degrees, Xiao Zhang, Raj Rao
Nadakuditi, and M. E. J. Newman,
*Phys. Rev. E***89**, 042816 (2014). - Prediction of highly cited
papers, M. E. J. Newman,
*Europhys. Lett.***105**, 28002 (2014). - Spectral methods for network
community detection and graph partitioning, M. E. J. Newman,
*Phys. Rev. E***88**, 042822 (2013). - Interacting epidemics and
coinfection on contact networks, M. E. J. Newman and C. R. Ferrario,
*PLOS One***8**, e71321 (2013). - Community detection and graph
partitioning, M. E. J. Newman,
*Europhys. Lett.***103**, 28003 (2013). - Coauthorship and citation in
scientific publishing, Travis Martin, Brian Ball, Brian Karrer, and
M. E. J. Newman,
*Phys. Rev. E***88**, 012814 (2013). - Friendship networks and
social status, Brian Ball and M. E. J. Newman,
*Network Science***1**, 16–30 (2013). - Spectra of random graphs with
arbitrary expected degrees, Raj Rao Nadakuditi and M. E. J. Newman,
*Phys. Rev. E***87**, 012803 (2013). - Graph spectra and the
detectability of community structure in networks, Raj Rao Nadakuditi and
M. E. J. Newman,
*Phys. Rev. Lett.***108**, 188701 (2012). - Communities, modules and large-scale
structure in networks, M. E. J. Newman,
*Nature Physics***8**, 25-31 (2012). - Competing epidemics on
complex networks, Brian Karrer and M. E. J. Newman,
*Phys. Rev. E***84**, 036106 (2011). - An efficient and principled
method for detecting communities in networks, Brian Ball, Brian Karrer,
and M. E. J. Newman,
*Phys. Rev. E***84**, 036103 (2011). - Complex systems: A survey,
M. E. J. Newman,
*Am. J. Phys.***79**, 800-810 (2011). - Transmission probabilities and durations of
immunity for three pathogenic group B
*Streptococcus*serotypes, Bethany Percha, M. E. J. Newman, and Betsy Foxman,*Infection, Genetics and Evolution***11**, 1407-1412 (2011). - Stochastic blockmodels and
community structure in networks, Brian Karrer and M. E. J. Newman,
*Phys. Rev. E***83**, 016107 (2011). - Random graphs containing
arbitrary distributions of subgraphs, Brian Karrer and M. E. J. Newman,
*Phys. Rev. E***82**, 066118 (2010). - Origin of compartmentalization
in food webs, R. Guimera, D. B. Stouffer, M. Sales-Pardo, E. A. Leicht,
M. E. J. Newman, and L. A. N. Amaral,
*Ecology***91**, 2941-2951 (2010). - A message passing approach for
general epidemic models, Brian Karrer and M. E. J. Newman,
*Phys. Rev. E***82**, 016101 (2010). *Networks: An Introduction,*M. E. J. Newman, Oxford University Press (2010).- Power-law distributions in
empirical data, Aaron Clauset, Cosma Rohilla Shalizi, and
M. E. J. Newman,
*SIAM Review***51**, 661-703 (2009). - Random graph models for
directed acyclic networks, Brian Karrer and M. E. J. Newman,
*Phys. Rev. E***80**, 046110 (2009). - Random graphs with
clustering, M. E. J. Newman,
*Phys. Rev. Lett.***103**, 058701 (2009). - Random hypergraphs and their
applications, Gourab Ghoshal, Vinko Zlatic, Guido Caldarelli, and
M. E. J. Newman,
*Phys. Rev. E***79**, 066118 (2009). - The first-mover advantage in
scientific publication, M. E. J. Newman,
*Europhys. Lett.***86**, 68001 (2009). - Random acyclic networks,
Brian Karrer and M. E. J. Newman,
*Phys. Rev. Lett.***102**, 128701 (2009). - The physics of networks, Mark
Newman,
*Physics Today*, November 2008, pp. 33–38. *The Atlas of the Real World*, Daniel Dorling, Mark Newman and Anna Barford, Thames & Hudson, London (2008).- Hierarchical
structure and the prediction of missing links in networks, Aaron
Clauset, Cristopher Moore, and M. E. J. Newman,
*Nature***453**, 98–101 (2008). - Robustness of community
structure in networks, Brian Karrer, Elizaveta Levina, and M. E. J.
Newman,
*Phys. Rev. E***77**, 046119 (2008). - Bicomponents and the
robustness of networks to failure, M. E. J. Newman and Gourab Ghoshal,
*Phys. Rev. Lett.***100**, 138701 (2008). - Community structure in
directed networks, E. A. Leicht and M. E. J. Newman,
*Phys. Rev. Lett.***100**, 118703 (2008). - Mathematics of networks,
M. E. J. Newman, in
*The New Palgrave Encyclopedia of Economics*, 2nd edition, L. E. Blume and S. N. Durlauf (eds.), Palgrave Macmillan, Basingstoke (2008). - Community structure
in the United States House of Representatives, Mason A. Porter, Peter
J. Mucha, M. E. J. Newman, and A. J. Friend,
*Physica A***386**, 414–438 (2007). - Component sizes in networks
with arbitrary degree distributions, M. E. J. Newman,
*Phys. Rev. E***76**, 045101 (2007). - Large-scale structure of
time evolving citation networks, E. A. Leicht, G. Clarkson, K.
Shedden, and M. E. J. Newman,
*Eur. Phys. J. B***59**, 75–83 (2007). - Growing distributed
networks with arbitrary degree distributions, G. Ghoshal and
M. E. J. Newman,
*Eur. Phys. J. B***58**, 175–184 (2007). - Mixture models and
exploratory analysis in networks, M. E. J. Newman and E. A. Leicht,
*Proc. Natl. Acad. Sci. USA***104**, 9564–9569 (2007). - Structural inference of
hierarchies in networks, Aaron Clauset, Cristopher Moore, and
M. E. J. Newman in
*Statistical Network Analysis: Models, Issues, and New Directions*, E. Airoldi, D. M. Blei, S. E. Fienberg, A. Goldenberg, E. P. Xing, and A. X. Zheng (eds.),*Lecture Notes in Computer Science,*Vol. 4503, pp. 1–13, Springer, Berlin (2007). - Nonequilibrium
phase transition in the coevolution of networks and opinions,
Petter Holme and M. E. J. Newman,
*Phys. Rev. E***74**, 056108 (2006). - Exact solutions for
models of evolving networks with addition and deletion of nodes,
Cristopher Moore, Gourab Ghoshal, and M. E. J. Newman,
*Phys. Rev. E***74**, 036121 (2006). - Finding community
structure in networks using the eigenvectors of matrices,
M. E. J. Newman,
*Phys. Rev. E***74**, 036104 (2006). - Optimal design of
spatial distribution networks, Michael T. Gastner and M. E. J. Newman,
*Phys. Rev. E***74**, 016117 (2006). - Modularity and
community structure in networks, M. E. J. Newman,
*Proc. Natl. Acad. Sci. USA***103**, 8577–8582 (2006). *The Structure and Dynamics of Networks*, M. E. J. Newman, A.-L. Barabási, and D. J. Watts, Princeton University Press (2006).- Predicting
epidemics on directed contact networks, Lauren Ancel Meyers,
M. E. J. Newman, and Babak Pourbohloul,
*Journal of Theoretical Biology***240**, 400–418 (2006). - Measures of sexual partnerships: Lengths, gaps,
overlaps and sexually transmitted infection, Betsy Foxman, Mark Newman,
Bethany Percha, King K. Holmes, and Sevgi O. Aral,
*Sexually Transmitted Diseases***33**, 209–214 (2006). - The spatial
structure of networks, Michael T. Gastner and M. E. J. Newman,
*Eur. Phys. J. B***49**, 247–252 (2006). - Vertex similarity
in networks, E. A. Leicht, Petter Holme, and M. E. J. Newman,
*Phys. Rev. E***73**, 026120 (2006). - Shape and
efficiency in spatial distribution networks, Michael T. Gastner and
M. E. J. Newman,
*J. Stat. Mech.*P01015 (2006). - Density-equalizing map projections:
Diffusion-based algorithm and applications, Michael T. Gastner and
M. E. J. Newman, in
*Proceedings of the 8th International Conference on Geocomputation*(2005). - A network-based
ranking system for American college football, Juyong Park and
M. E. J. Newman,
*J. Stat. Mech.*P10014 (2005). - Solution for
the properties of a clustered network, Juyong Park and M. E. J. Newman,
*Phys. Rev. E***72**, 026136 (2005). - Threshold effects
for two pathogens spreading on a network, M. E. J. Newman,
*Phys. Rev. Lett.***95**, 108701 (2005). - Power laws,
Pareto distributions and Zipf's law, M. E. J. Newman,
*Contemporary Physics***46**, 323–351 (2005). - A network analysis of committees in the
United States House of Representatives, Mason A. Porter, Peter
J. Mucha, M. E. J. Newman, and Casey M. Warmbrand,
*Proc. Natl. Acad. Sci. USA***102**, 7057–7062 (2005). - Maps and cartograms of the 2004 US
presidential election results, M. T. Gastner, C. R. Shalizi, and
M. E. J. Newman,
*Advances in Complex Systems***8**, 117–123 (2005). - A measure of
betweenness centrality based on random walks, M. E. J. Newman,
*Social Networks***27**, 39–54 (2005). - Network theory and SARS: Predicting outbreak
diversity, Lauren Ancel Meyers, Babak Pourbohloul, M. E. J. Newman,
Danuta M. Skowronski, and Robert C. Brunham,
*Journal of Theoretical Biology***232**, 71–81 (2005). - Solution of the
2-star model of a network, Juyong Park and M. E. J. Newman,
*Phys. Rev. E***70**, 066146 (2004). - Identifying the role
that animals play in their social networks, David Lusseau and
M. E. J. Newman,
*Proc. R. Soc. London B***271**, S477–S481 (2004). - The statistical
mechanics of networks, Juyong Park and M. E. J. Newman,
*Phys. Rev. E***70**, 066117 (2004). - Finding community
structure in very large networks, Aaron Clauset, M. E. J. Newman, and
Cristopher Moore,
*Phys. Rev. E***70**, 066111 (2004). - Subgraphs in
networks, R. Milo, N. Kashtan, S. Itzkovitz, M. E. J. Newman, and
U. Alon,
*Phys. Rev. E***70**, 058102 (2004). - Analysis of
weighted networks, M. E. J. Newman,
*Phys. Rev. E***70**, 056131 (2004). - The physical
limits of communication, Michael Lachmann, M. E. J. Newman, and
Cristopher Moore,
*Am. J. Phys.***72**, 1290–1293 (2004). - Who is the best connected scientist?
A study of scientific coauthorship networks, M. E. J. Newman, in
*Complex Networks*, E. Ben-Naim, H. Frauenfelder, and Z. Toroczkai (eds.), pp. 337–370, Springer, Berlin (2004). - Fast algorithm for
detecting community structure in networks, M. E. J. Newman,
*Phys. Rev. E***69**, 066133 (2004). - Detecting community structure in
networks, M. E. J. Newman,
*Eur. Phys. J. B***38**, 321–330 (2004). - Diffusion-based
method for producing density equalizing maps, Michael T. Gastner and
M. E. J. Newman,
*Proc. Natl. Acad. Sci. USA***101**, 7499–7504 (2004). - Technological networks and
the spread of computer viruses, Justin Balthrop, Stephanie Forrest,
M. E. J. Newman, and Matthew M. Williamson,
*Science***304**, 527–529 (2004). - Coauthorship networks and patterns of
scientific collaboration, M. E. J. Newman,
*Proc. Natl. Acad. Sci. USA***101**, 5200–5205 (2004). - Finding and
evaluating community structure in networks, M. E. J. Newman and
M. Girvan,
*Phys. Rev. E***69**, 026113 (2004). - Mixing patterns
and community structure in networks, M. E. J. Newman and M. Girvan, in
*Statistical Mechanics of Complex Networks,*R. Pastor-Satorras, J. Rubi, and A. Diaz-Guilera (eds.), Springer, Berlin (2003). - Why social
networks are different from other types of networks, M. E. J. Newman
and Juyong Park,
*Phys. Rev. E***68**, 036122 (2003). - Properties of highly
clustered networks, M. E. J. Newman,
*Phys. Rev. E***68**, 026121 (2003). - The origin of degree
correlations in the Internet and other networks, Juyong Park and
M. E. J. Newman,
*Phys. Rev. E.***68**, 026112 (2003). - The structure and
function of complex networks, M. E. J. Newman,
*SIAM Review***45**, 167–256 (2003). - Mixing patterns in
networks, M. E. J. Newman,
*Phys. Rev. E***67**, 026126 (2003). - Applying network theory to epidemics:
Control measures for outbreaks of
*Mycoplasma pneumoniae*, Lauren Ancel Meyers, M. E. J. Newman, Michael Martin, and Stephanie Schrag,*Emerging Infectious Diseases***9**, 204–210 (2003). *Modelling Extinction*, M. E. J. Newman and R. G. Palmer, Oxford University Press (2003).- Ego-centered
networks and the ripple effect, M. E. J. Newman,
*Social Networks***25**, 83–95 (2003). - Random graphs as models
of networks, M. E. J. Newman, in
*Handbook of Graphs and Networks*, S. Bornholdt and H. G. Schuster (eds.), Wiley-VCH, Berlin (2003). - Assortative mixing in
networks, M. E. J. Newman,
*Phys. Rev. Lett.***89**, 208701 (2002). - Email networks and the spread of computer
viruses, M. E. J. Newman, Stephanie Forrest, and Justin Balthrop,
*Phys. Rev. E***66**, 035101 (2002). - Convergence of
threshold estimates for two-dimensional percolation, R. M. Ziff and
M. E. J. Newman,
*Phys. Rev. E***66**, 016129 (2002). - The structure and function of networks,
M. E. J. Newman,
*Computer Physics Communications***147**, 40–45 (2002). - The spread of epidemic
disease on networks, M. E. J. Newman,
*Phys. Rev. E***66**, 016128 (2002). - Optimal design,
robustness, and risk aversion, M. E. J. Newman, Michelle Girvan, and
J. Doyne Farmer,
*Phys. Rev. Lett.***89**, 028301 (2002). - Community structure
in social and biological networks, M. Girvan and M. E. J. Newman,
*Proc. Natl. Acad. Sci. USA***99**, 7821–7826 (2002). - Identity
and search in social networks, D. J. Watts, P. S. Dodds, and
M. E. J. Newman,
*Science***296**, 1302–1305 (2002). - A simple model of
epidemics with pathogen mutation, Michelle Girvan, Duncan
S. Callaway, M. E. J. Newman, and Steven H. Strogatz,
*Phys. Rev. E***65**, 031915 (2002). - Random graph models of social
networks, M. E. J. Newman, D. J. Watts, and S. H. Strogatz,
*Proc. Natl. Acad. Sci. USA***99**, 2566–2572 (2002). - Complex systems theory and evolution,
Melanie Mitchell and Mark Newman, in the
*Encyclopedia of Evolution*, M. Pagel (ed.), Oxford University Press, New York (2002). - Percolation and epidemics
in a two-dimensional small world, M. E. J. Newman, I. Jensen, and
R. M. Ziff,
*Phys. Rev. E***65**, 021904 (2002). - Dynamics of a simple
evolutionary process, Dietrich Stauffer and M. E. J. Newman,
*Int. J. Mod. Phys. C***12**, 1375–1382 (2001). - The structure of growing social
networks, Emily M. Jin, Michelle Girvan, and M. E. J. Newman,
*Phys. Rev. E***64**, 046132 (2001). - Are randomly grown
graphs really random? D. S. Callaway, J. E. Hopcroft,
J. M. Kleinberg, M. E. J. Newman, and S. H. Strogatz,
*Phys. Rev. E***64**, 041902 (2001). - Random graphs with
arbitrary degree distributions and their applications, M. E. J. Newman,
S. H. Strogatz, and D. J. Watts,
*Phys. Rev. E***64**, 026118 (2001). - Clustering and
preferential attachment in growing networks, M. E. J. Newman,
*Phys. Rev. E***64**, 025102 (2001). - Fast Monte Carlo
algorithm for site or bond percolation, M. E. J. Newman and
R. M. Ziff,
*Phys. Rev. E***64**, 016706 (2001). - Scientific
collaboration networks: I. Network construction and fundamental
results, M. E. J. Newman,
*Phys. Rev. E***64**, 016131 (2001). - Scientific
collaboration networks: II. Shortest paths, weighted networks, and
centrality, M. E. J. Newman,
*Phys. Rev. E***64**, 016132 (2001). - A new picture of life's history on
Earth, Mark Newman,
*Proc. Natl. Acad. Sci. USA***98**, 5955–5956 (2001). - The structure
of scientific collaboration networks, M. E. J. Newman,
*Proc. Natl. Acad. Sci. USA***98**, 404–409 (2001). - Patterns of extinction and biodiversity
in the fossil record, R. V. Sole and M. E. J. Newman, in the
*Encyclopedia of Global Environmental Change,*T. Munn (ed.), John Wiley, New York (2001). - Network
robustness and fragility: Percolation on random graphs,
D. S. Callaway, M. E. J. Newman, S. H. Strogatz and D. J. Watts,
*Phys. Rev. Lett.***85**, 5468–5471 (2000). - Models of the small
world, M. E. J. Newman,
*J. Stat. Phys.***101**, 819–841 (2000). - Replica-exchange
algorithm and results for the three-dimensional random field Ising
model, J. Machta, M. E. J. Newman and L. B. Chayes,
*Phys. Rev. E***62**, 8782–8789 (2000). - Glassiness and
constrained dynamics of a short-range non-disordered spin model,
J. P. Garrahan and M. E. J. Newman,
*Phys. Rev. E***62**, 7670–7678 (2000). - Exact solution of
site and bond percolation on small-world networks, Cristopher
Moore and M. E. J. Newman,
*Phys. Rev. E***62**, 7059–7064 (2000). -
The power of
design, Mark Newman,
*Nature***405**, 412–413 (2000). - Simple models of
evolution and extinction, M. E. J. Newman,
*Computing in Science and Engineering***2**, 80–86 (2000). - Epidemics and
percolation in small-world networks, Cristopher Moore and
M. E. J. Newman,
*Phys. Rev. E***61**, 5678–5682 (2000). - Efficient Monte
Carlo algorithm and high-precision results for percolation,
M. E. J. Newman and R. M. Ziff,
*Phys. Rev. Lett.***85**, 4104–4107 (2000). - Height
representation, critical exponents, and ergodicity in the four-state
triangular Potts antiferromagnet, Cristopher Moore and
M. E. J. Newman,
*J. Stat. Phys.***99**, 629–660 (2000). - Mean-field
solution of the small-world network model, M. E. J. Newman,
C. Moore and D. J. Watts,
*Phys. Rev. Lett.***84**, 3201–3204 (2000). - Patterns of biodiversity in the fossil
record, M. E. J. Newman and G. J. Eble, in the
*Encyclopedia of Biodiversity,*S. Levin (ed.), Academic Press, London (2000). - Scaling and
percolation in the small-world network model, M. E. J. Newman and
D. J. Watts,
*Phys. Rev. E***60**, 7332–7342 (1999). -
Renormalization group analysis of the small-world network model,
M. E. J. Newman and D. J. Watts,
*Phys. Lett. A***263**, 341–346 (1999). - Error estimation
in the histogram Monte Carlo method, M. E. J. Newman and
R. G. Palmer,
*J. Stat. Phys.***97**, 1011–1026 (1999). - Decline in
extinction rates and scale invariance in the fossil record,
M. E. J. Newman and Gunther J. Eble,
*Paleobiology***25**, 434–439 (1999). - Extinction,
diversity and survivorship of taxa in the fossil record,
M. E. J. Newman and Paolo Sibani,
*Proc. R. Soc. London B***266**, 1593–1599 (1999). - Glassy dynamics
and aging in an exactly solvable spin model, M. E. J. Newman and
Cristopher Moore,
*Phys. Rev. E***60**, 5068–5072 (1999). - Power spectra
of extinction in the fossil record, M. E. J. Newman and
Gunther J. Eble,
*Proc. R. Soc. London B***266**, 1267–1270 (1999). *Monte Carlo Methods in Statistical Physics*, M. E. J. Newman and G. T. Barkema, Oxford University Press (1999).- New Monte Carlo
algorithms for classical spin systems, G. T. Barkema and
M. E. J. Newman, in
*Monte Carlo Methods in Chemical Physics,*D. Ferguson, J. I. Siepmann, and D. G. Truhlar (eds.), Wiley, New York (1999). - Effects of selective
neutrality on the evolution of molecular species, M. E. J. Newman and
Robin Engelhardt,
*Proc. R. Soc. London B***265**, 1333–1338 (1998). - Monte Carlo
simulation of ice models, G. T. Barkema and M. E. J. Newman,
*Phys. Rev. E***57**, 1155–1166 (1998). - Coherent noise,
scale invariance and intermittency in large systems, Kim Sneppen
and M. E. J. Newman,
*Physica D***110**, 209–222 (1997). - Comment on
"Self-organized criticality in living systems" by C. Adami,
M. E. J. Newman, Simon M. Fraser, Kim Sneppen and William A. Tozier,
*Phys. Lett. A***228**, 202–204 (1997). - The repton
model of gel electrophoresis, G. T. Barkema and
M. E. J. Newman,
*Physica A***244**, 25–39 (1997). - A model of mass
extinction, M. E. J. Newman,
*J. Theor. Biol.***189**, 235–252 (1997). - Evidence for self-organized criticality in
evolution, M. E. J. Newman,
*Physica D***107**, 293–296 (1997). - Diffusion constant
for the repton model of gel electrophoresis, M. E. J. Newman and
G. T. Barkema,
*Phys. Rev. E***56**, 3468–3473 (1997). - Monte Carlo study of
the random-field Ising model, M. E. J. Newman and G. T. Barkema,
*Phys. Rev. E***53**, 393–404 (1996). - Avalanches,
scaling, and coherent noise, M. E. J. Newman and Kim Sneppen,
*Phys. Rev. E***54**, 6226–6231 (1996). - Self-organized
criticality, evolution, and the fossil extinction record, M. E. J.
Newman,
*Proc. R. Soc. London B***263**, 1605–1610 (1996). - A model for evolution
and extinction, B. W. Roberts and M. E. J. Newman,
*J. Theor. Biol.***180**, 39–54 (1996). - Mass-extinction:
Evolution and the effects of external influences on unfit species,
M. E. J. Newman and B. W. Roberts,
*Proc. R. Soc. London B***260**, 31–37 (1995). - Phason elasticity of
a three-dimensional quasicrystal: transfer-matrix method, M. E. J.
Newman and C. L. Henley,
*Phys. Rev. B***52**, 6386–6399 (1995). - Construction of periodic approximants for the
canonical-cell model of a quasicrystal, M. E. J. Newman, C. L. Henley,
and M. Oxborrow,
*Phil. Mag. B***71**, 991–1013 (1995). -
A model for the shapes of islands and pits on (111) surfaces of fcc
metals, G. T. Barkema, M. E. J. Newman, and M. Breeman,
*Phys. Rev. B***50**, 7946–7951 (1994). -
Real-space renormalization group for the random-field Ising model,
M. E. J. Newman, B. W. Roberts, G. T. Barkema, and J. P. Sethna,
*Phys. Rev. B***48**, 16533–16538 (1993). - Transfer-matrix analysis of the canonical-cell
model of a quasicrystal, M. E. J. Newman and C. L. Henley,
*J. Non-cryst. Solids***153**, 205–209 (1993). *The Theory of Critical Phenomena,*J. J. Binney, N. J. Dowrick, A. J. Fisher and M. E. J. Newman, Oxford University Press (1992).- Green's functions, density of states and
dynamic structure factor for a general one-dimensional quasicrystal,
M. E. J. Newman,
*Phys. Rev. B***43**, 10915–10927 (1991). - Hopping conductivity of the Fibonacci-chain
quasicrystal, M. E. J. Newman and R. B. Stinchcombe,
*Phys. Rev. B***43**, 1183–1186 (1991).

Last modified: November 13, 2014

Mark Newman, mejn@umich.edu