Publications


  1. Identification of core-periphery structure in networks, Xiao Zhang, Travis Martin, and M. E. J. Newman, submitted to Phys. Rev. E.
  2. Equitable random graphs, M. E. J. Newman and Travis Martin, submitted to Phys. Rev. E.
  3. The small-world effect is a modern phenomenon, Seth A. Marvel, Travis Martin, Charles R. Doering, David Lusseau, and M. E. J. Newman, submitted to Proc. Natl. Acad. Sci. USA.
  4. Localization and centrality in networks, Travis Martin, Xiao Zhang, and M. E. J. Newman, Phys. Rev. E, in press.
  5. Percolation on sparse networks, Brian Karrer, M. E. J. Newman, and Lenka Zdeborov√°, Phys. Rev. Lett., in press.
  6. First-principles multiway spectral partitioning of graphs, Maria A. Riolo and M. E. J. Newman, Journal of Complex Networks 2, 121-140 (2014).
  7. Spectra of random graphs with community structure and arbitrary degrees, Xiao Zhang, Raj Rao Nadakuditi, and M. E. J. Newman, Phys. Rev. E 89, 042816 (2014).
  8. Prediction of highly cited papers, M. E. J. Newman, Europhys. Lett. 105, 28002 (2014).
  9. Spectral methods for network community detection and graph partitioning, M. E. J. Newman, Phys. Rev. E 88, 042822 (2013).
  10. Interacting epidemics and coinfection on contact networks, M. E. J. Newman and C. R. Ferrario, PLOS One 8, e71321 (2013).
  11. Community detection and graph partitioning, M. E. J. Newman, Europhys. Lett. 103, 28003 (2013).
  12. Coauthorship and citation in scientific publishing, Travis Martin, Brian Ball, Brian Karrer, and M. E. J. Newman, Phys. Rev. E 88, 012814 (2013).
  13. Friendship networks and social status, Brian Ball and M. E. J. Newman, Network Science 1, 16–30 (2013).
  14. Spectra of random graphs with arbitrary expected degrees, Raj Rao Nadakuditi and M. E. J. Newman, Phys. Rev. E 87, 012803 (2013).
  15. Graph spectra and the detectability of community structure in networks, Raj Rao Nadakuditi and M. E. J. Newman, Phys. Rev. Lett. 108, 188701 (2012).
  16. Communities, modules and large-scale structure in networks, M. E. J. Newman, Nature Physics 8, 25-31 (2012).
  17. Competing epidemics on complex networks, Brian Karrer and M. E. J. Newman, Phys. Rev. E 84, 036106 (2011).
  18. An efficient and principled method for detecting communities in networks, Brian Ball, Brian Karrer, and M. E. J. Newman, Phys. Rev. E 84, 036103 (2011).
  19. Complex systems: A survey, M. E. J. Newman, Am. J. Phys. 79, 800-810 (2011).
  20. Transmission probabilities and durations of immunity for three pathogenic group B Streptococcus serotypes, Bethany Percha, M. E. J. Newman, and Betsy Foxman, Infection, Genetics and Evolution 11, 1407-1412 (2011).
  21. Stochastic blockmodels and community structure in networks, Brian Karrer and M. E. J. Newman, Phys. Rev. E 83, 016107 (2011).
  22. Random graphs containing arbitrary distributions of subgraphs, Brian Karrer and M. E. J. Newman, Phys. Rev. E 82, 066118 (2010).
  23. Origin of compartmentalization in food webs, R. Guimera, D. B. Stouffer, M. Sales-Pardo, E. A. Leicht, M. E. J. Newman, and L. A. N. Amaral, Ecology 91, 2941-2951 (2010).
  24. A message passing approach for general epidemic models, Brian Karrer and M. E. J. Newman, Phys. Rev. E 82, 016101 (2010).
  25. Networks: An Introduction, M. E. J. Newman, Oxford University Press (2010).
  26. Power-law distributions in empirical data, Aaron Clauset, Cosma Rohilla Shalizi, and M. E. J. Newman, SIAM Review 51, 661-703 (2009).
  27. Random graph models for directed acyclic networks, Brian Karrer and M. E. J. Newman, Phys. Rev. E 80, 046110 (2009).
  28. Random graphs with clustering, M. E. J. Newman, Phys. Rev. Lett. 103, 058701 (2009).
  29. Random hypergraphs and their applications, Gourab Ghoshal, Vinko Zlatic, Guido Caldarelli, and M. E. J. Newman, Phys. Rev. E 79, 066118 (2009).
  30. The first-mover advantage in scientific publication, M. E. J. Newman, Europhys. Lett. 86, 68001 (2009).
  31. Random acyclic networks, Brian Karrer and M. E. J. Newman, Phys. Rev. Lett. 102, 128701 (2009).
  32. The physics of networks, Mark Newman, Physics Today, November 2008, pp. 33–38.
  33. The Atlas of the Real World, Daniel Dorling, Mark Newman and Anna Barford, Thames & Hudson, London (2008).
  34. Hierarchical structure and the prediction of missing links in networks, Aaron Clauset, Cristopher Moore, and M. E. J. Newman, Nature 453, 98–101 (2008).
  35. Robustness of community structure in networks, Brian Karrer, Elizaveta Levina, and M. E. J. Newman, Phys. Rev. E 77, 046119 (2008).
  36. Bicomponents and the robustness of networks to failure, M. E. J. Newman and Gourab Ghoshal, Phys. Rev. Lett. 100, 138701 (2008).
  37. Community structure in directed networks, E. A. Leicht and M. E. J. Newman, Phys. Rev. Lett. 100, 118703 (2008).
  38. Mathematics of networks, M. E. J. Newman, in The New Palgrave Encyclopedia of Economics, 2nd edition, L. E. Blume and S. N. Durlauf (eds.), Palgrave Macmillan, Basingstoke (2008).
  39. Community structure in the United States House of Representatives, Mason A. Porter, Peter J. Mucha, M. E. J. Newman, and A. J. Friend, Physica A 386, 414–438 (2007).
  40. Component sizes in networks with arbitrary degree distributions, M. E. J. Newman, Phys. Rev. E 76, 045101 (2007).
  41. Large-scale structure of time evolving citation networks, E. A. Leicht, G. Clarkson, K. Shedden, and M. E. J. Newman, Eur. Phys. J. B 59, 75–83 (2007).
  42. Growing distributed networks with arbitrary degree distributions, G. Ghoshal and M. E. J. Newman, Eur. Phys. J. B 58, 175–184 (2007).
  43. Mixture models and exploratory analysis in networks, M. E. J. Newman and E. A. Leicht, Proc. Natl. Acad. Sci. USA 104, 9564–9569 (2007).
  44. Structural inference of hierarchies in networks, Aaron Clauset, Cristopher Moore, and M. E. J. Newman in Statistical Network Analysis: Models, Issues, and New Directions, E. Airoldi, D. M. Blei, S. E. Fienberg, A. Goldenberg, E. P. Xing, and A. X. Zheng (eds.), Lecture Notes in Computer Science, Vol. 4503, pp. 1–13, Springer, Berlin (2007).
  45. Nonequilibrium phase transition in the coevolution of networks and opinions, Petter Holme and M. E. J. Newman, Phys. Rev. E 74, 056108 (2006).
  46. Exact solutions for models of evolving networks with addition and deletion of nodes, Cristopher Moore, Gourab Ghoshal, and M. E. J. Newman, Phys. Rev. E 74, 036121 (2006).
  47. Finding community structure in networks using the eigenvectors of matrices, M. E. J. Newman, Phys. Rev. E 74, 036104 (2006).
  48. Optimal design of spatial distribution networks, Michael T. Gastner and M. E. J. Newman, Phys. Rev. E 74, 016117 (2006).
  49. Modularity and community structure in networks, M. E. J. Newman, Proc. Natl. Acad. Sci. USA 103, 8577–8582 (2006).
  50. The Structure and Dynamics of Networks, M. E. J. Newman, A.-L. Barabási, and D. J. Watts, Princeton University Press (2006).
  51. Predicting epidemics on directed contact networks, Lauren Ancel Meyers, M. E. J. Newman, and Babak Pourbohloul, Journal of Theoretical Biology 240, 400–418 (2006).
  52. Measures of sexual partnerships: Lengths, gaps, overlaps and sexually transmitted infection, Betsy Foxman, Mark Newman, Bethany Percha, King K. Holmes, and Sevgi O. Aral, Sexually Transmitted Diseases 33, 209–214 (2006).
  53. The spatial structure of networks, Michael T. Gastner and M. E. J. Newman, Eur. Phys. J. B 49, 247–252 (2006).
  54. Vertex similarity in networks, E. A. Leicht, Petter Holme, and M. E. J. Newman, Phys. Rev. E 73, 026120 (2006).
  55. Shape and efficiency in spatial distribution networks, Michael T. Gastner and M. E. J. Newman, J. Stat. Mech. P01015 (2006).
  56. Density-equalizing map projections: Diffusion-based algorithm and applications, Michael T. Gastner and M. E. J. Newman, in Proceedings of the 8th International Conference on Geocomputation (2005).
  57. A network-based ranking system for American college football, Juyong Park and M. E. J. Newman, J. Stat. Mech. P10014 (2005).
  58. Solution for the properties of a clustered network, Juyong Park and M. E. J. Newman, Phys. Rev. E 72, 026136 (2005).
  59. Threshold effects for two pathogens spreading on a network, M. E. J. Newman, Phys. Rev. Lett. 95, 108701 (2005).
  60. Power laws, Pareto distributions and Zipf's law, M. E. J. Newman, Contemporary Physics 46, 323–351 (2005).
  61. A network analysis of committees in the United States House of Representatives, Mason A. Porter, Peter J. Mucha, M. E. J. Newman, and Casey M. Warmbrand, Proc. Natl. Acad. Sci. USA 102, 7057–7062 (2005).
  62. Maps and cartograms of the 2004 US presidential election results, M. T. Gastner, C. R. Shalizi, and M. E. J. Newman, Advances in Complex Systems 8, 117–123 (2005).
  63. A measure of betweenness centrality based on random walks, M. E. J. Newman, Social Networks 27, 39–54 (2005).
  64. Network theory and SARS: Predicting outbreak diversity, Lauren Ancel Meyers, Babak Pourbohloul, M. E. J. Newman, Danuta M. Skowronski, and Robert C. Brunham, Journal of Theoretical Biology 232, 71–81 (2005).
  65. Solution of the 2-star model of a network, Juyong Park and M. E. J. Newman, Phys. Rev. E 70, 066146 (2004).
  66. Identifying the role that animals play in their social networks, David Lusseau and M. E. J. Newman, Proc. R. Soc. London B 271, S477–S481 (2004).
  67. The statistical mechanics of networks, Juyong Park and M. E. J. Newman, Phys. Rev. E 70, 066117 (2004).
  68. Finding community structure in very large networks, Aaron Clauset, M. E. J. Newman, and Cristopher Moore, Phys. Rev. E 70, 066111 (2004).
  69. Subgraphs in networks, R. Milo, N. Kashtan, S. Itzkovitz, M. E. J. Newman, and U. Alon, Phys. Rev. E 70, 058102 (2004).
  70. Analysis of weighted networks, M. E. J. Newman, Phys. Rev. E 70, 056131 (2004).
  71. The physical limits of communication, Michael Lachmann, M. E. J. Newman, and Cristopher Moore, Am. J. Phys. 72, 1290–1293 (2004).
  72. Who is the best connected scientist? A study of scientific coauthorship networks, M. E. J. Newman, in Complex Networks, E. Ben-Naim, H. Frauenfelder, and Z. Toroczkai (eds.), pp. 337–370, Springer, Berlin (2004).
  73. Fast algorithm for detecting community structure in networks, M. E. J. Newman, Phys. Rev. E 69, 066133 (2004).
  74. Detecting community structure in networks, M. E. J. Newman, Eur. Phys. J. B 38, 321–330 (2004).
  75. Diffusion-based method for producing density equalizing maps, Michael T. Gastner and M. E. J. Newman, Proc. Natl. Acad. Sci. USA 101, 7499–7504 (2004).
  76. Technological networks and the spread of computer viruses, Justin Balthrop, Stephanie Forrest, M. E. J. Newman, and Matthew M. Williamson, Science 304, 527–529 (2004).
  77. Coauthorship networks and patterns of scientific collaboration, M. E. J. Newman, Proc. Natl. Acad. Sci. USA 101, 5200–5205 (2004).
  78. Finding and evaluating community structure in networks, M. E. J. Newman and M. Girvan, Phys. Rev. E 69, 026113 (2004).
  79. Mixing patterns and community structure in networks, M. E. J. Newman and M. Girvan, in Statistical Mechanics of Complex Networks, R. Pastor-Satorras, J. Rubi, and A. Diaz-Guilera (eds.), Springer, Berlin (2003).
  80. Why social networks are different from other types of networks, M. E. J. Newman and Juyong Park, Phys. Rev. E 68, 036122 (2003).
  81. Properties of highly clustered networks, M. E. J. Newman, Phys. Rev. E 68, 026121 (2003).
  82. The origin of degree correlations in the Internet and other networks, Juyong Park and M. E. J. Newman, Phys. Rev. E. 68, 026112 (2003).
  83. The structure and function of complex networks, M. E. J. Newman, SIAM Review 45, 167–256 (2003).
  84. Mixing patterns in networks, M. E. J. Newman, Phys. Rev. E 67, 026126 (2003).
  85. Applying network theory to epidemics: Control measures for outbreaks of Mycoplasma pneumoniae, Lauren Ancel Meyers, M. E. J. Newman, Michael Martin, and Stephanie Schrag, Emerging Infectious Diseases 9, 204–210 (2003).
  86. Modelling Extinction, M. E. J. Newman and R. G. Palmer, Oxford University Press (2003).
  87. Ego-centered networks and the ripple effect, M. E. J. Newman, Social Networks 25, 83–95 (2003).
  88. Random graphs as models of networks, M. E. J. Newman, in Handbook of Graphs and Networks, S. Bornholdt and H. G. Schuster (eds.), Wiley-VCH, Berlin (2003).
  89. Assortative mixing in networks, M. E. J. Newman, Phys. Rev. Lett. 89, 208701 (2002).
  90. Email networks and the spread of computer viruses, M. E. J. Newman, Stephanie Forrest, and Justin Balthrop, Phys. Rev. E 66, 035101 (2002).
  91. Convergence of threshold estimates for two-dimensional percolation, R. M. Ziff and M. E. J. Newman, Phys. Rev. E 66, 016129 (2002).
  92. The structure and function of networks, M. E. J. Newman, Computer Physics Communications 147, 40–45 (2002).
  93. The spread of epidemic disease on networks, M. E. J. Newman, Phys. Rev. E 66, 016128 (2002).
  94. Optimal design, robustness, and risk aversion, M. E. J. Newman, Michelle Girvan, and J. Doyne Farmer, Phys. Rev. Lett. 89, 028301 (2002).
  95. Community structure in social and biological networks, M. Girvan and M. E. J. Newman, Proc. Natl. Acad. Sci. USA 99, 7821–7826 (2002).
  96. Identity and search in social networks, D. J. Watts, P. S. Dodds, and M. E. J. Newman, Science 296, 1302–1305 (2002).
  97. A simple model of epidemics with pathogen mutation, Michelle Girvan, Duncan S. Callaway, M. E. J. Newman, and Steven H. Strogatz, Phys. Rev. E 65, 031915 (2002).
  98. Random graph models of social networks, M. E. J. Newman, D. J. Watts, and S. H. Strogatz, Proc. Natl. Acad. Sci. USA 99, 2566–2572 (2002).
  99. Complex systems theory and evolution, Melanie Mitchell and Mark Newman, in the Encyclopedia of Evolution, M. Pagel (ed.), Oxford University Press, New York (2002).
  100. Percolation and epidemics in a two-dimensional small world, M. E. J. Newman, I. Jensen, and R. M. Ziff, Phys. Rev. E 65, 021904 (2002).
  101. Dynamics of a simple evolutionary process, Dietrich Stauffer and M. E. J. Newman, Int. J. Mod. Phys. C 12, 1375–1382 (2001).
  102. The structure of growing social networks, Emily M. Jin, Michelle Girvan, and M. E. J. Newman, Phys. Rev. E 64, 046132 (2001).
  103. Are randomly grown graphs really random? D. S. Callaway, J. E. Hopcroft, J. M. Kleinberg, M. E. J. Newman, and S. H. Strogatz, Phys. Rev. E 64, 041902 (2001).
  104. Random graphs with arbitrary degree distributions and their applications, M. E. J. Newman, S. H. Strogatz, and D. J. Watts, Phys. Rev. E 64, 026118 (2001).
  105. Clustering and preferential attachment in growing networks, M. E. J. Newman, Phys. Rev. E 64, 025102 (2001).
  106. Fast Monte Carlo algorithm for site or bond percolation, M. E. J. Newman and R. M. Ziff, Phys. Rev. E 64, 016706 (2001).
  107. Scientific collaboration networks: I. Network construction and fundamental results, M. E. J. Newman, Phys. Rev. E 64, 016131 (2001).
  108. Scientific collaboration networks: II. Shortest paths, weighted networks, and centrality, M. E. J. Newman, Phys. Rev. E 64, 016132 (2001).
  109. A new picture of life's history on Earth, Mark Newman, Proc. Natl. Acad. Sci. USA 98, 5955–5956 (2001).
  110. The structure of scientific collaboration networks, M. E. J. Newman, Proc. Natl. Acad. Sci. USA 98, 404–409 (2001).
  111. Patterns of extinction and biodiversity in the fossil record, R. V. Sole and M. E. J. Newman, in the Encyclopedia of Global Environmental Change, T. Munn (ed.), John Wiley, New York (2001).
  112. Network robustness and fragility: Percolation on random graphs, D. S. Callaway, M. E. J. Newman, S. H. Strogatz and D. J. Watts, Phys. Rev. Lett. 85, 5468–5471 (2000).
  113. Models of the small world, M. E. J. Newman, J. Stat. Phys. 101, 819–841 (2000).
  114. Replica-exchange algorithm and results for the three-dimensional random field Ising model, J. Machta, M. E. J. Newman and L. B. Chayes, Phys. Rev. E 62, 8782–8789 (2000).
  115. Glassiness and constrained dynamics of a short-range non-disordered spin model, J. P. Garrahan and M. E. J. Newman, Phys. Rev. E 62, 7670–7678 (2000).
  116. Exact solution of site and bond percolation on small-world networks, Cristopher Moore and M. E. J. Newman, Phys. Rev. E 62, 7059–7064 (2000).
  117. The power of design, Mark Newman, Nature 405, 412–413 (2000).
  118. Simple models of evolution and extinction, M. E. J. Newman, Computing in Science and Engineering 2, 80–86 (2000).
  119. Epidemics and percolation in small-world networks, Cristopher Moore and M. E. J. Newman, Phys. Rev. E 61, 5678–5682 (2000).
  120. Efficient Monte Carlo algorithm and high-precision results for percolation, M. E. J. Newman and R. M. Ziff, Phys. Rev. Lett. 85, 4104–4107 (2000).
  121. Height representation, critical exponents, and ergodicity in the four-state triangular Potts antiferromagnet, Cristopher Moore and M. E. J. Newman, J. Stat. Phys. 99, 629–660 (2000).
  122. Mean-field solution of the small-world network model, M. E. J. Newman, C. Moore and D. J. Watts, Phys. Rev. Lett. 84, 3201–3204 (2000).
  123. Patterns of biodiversity in the fossil record, M. E. J. Newman and G. J. Eble, in the Encyclopedia of Biodiversity, S. Levin (ed.), Academic Press, London (2000).
  124. Scaling and percolation in the small-world network model, M. E. J. Newman and D. J. Watts, Phys. Rev. E 60, 7332–7342 (1999).
  125. Renormalization group analysis of the small-world network model, M. E. J. Newman and D. J. Watts, Phys. Lett. A 263, 341–346 (1999).
  126. Error estimation in the histogram Monte Carlo method, M. E. J. Newman and R. G. Palmer, J. Stat. Phys. 97, 1011–1026 (1999).
  127. Decline in extinction rates and scale invariance in the fossil record, M. E. J. Newman and Gunther J. Eble, Paleobiology 25, 434–439 (1999).
  128. Extinction, diversity and survivorship of taxa in the fossil record, M. E. J. Newman and Paolo Sibani, Proc. R. Soc. London B 266, 1593–1599 (1999).
  129. Glassy dynamics and aging in an exactly solvable spin model, M. E. J. Newman and Cristopher Moore, Phys. Rev. E 60, 5068–5072 (1999).
  130. Power spectra of extinction in the fossil record, M. E. J. Newman and Gunther J. Eble, Proc. R. Soc. London B 266, 1267–1270 (1999).
  131. Monte Carlo Methods in Statistical Physics, M. E. J. Newman and G. T. Barkema, Oxford University Press (1999).
  132. New Monte Carlo algorithms for classical spin systems, G. T. Barkema and M. E. J. Newman, in Monte Carlo Methods in Chemical Physics, D. Ferguson, J. I. Siepmann, and D. G. Truhlar (eds.), Wiley, New York (1999).
  133. Effects of selective neutrality on the evolution of molecular species, M. E. J. Newman and Robin Engelhardt, Proc. R. Soc. London B 265, 1333–1338 (1998).
  134. Monte Carlo simulation of ice models, G. T. Barkema and M. E. J. Newman, Phys. Rev. E 57, 1155–1166 (1998).
  135. Coherent noise, scale invariance and intermittency in large systems, Kim Sneppen and M. E. J. Newman, Physica D 110, 209–222 (1997).
  136. Comment on "Self-organized criticality in living systems" by C. Adami, M. E. J. Newman, Simon M. Fraser, Kim Sneppen and William A. Tozier, Phys. Lett. A 228, 202–204 (1997).
  137. The repton model of gel electrophoresis, G. T. Barkema and M. E. J. Newman, Physica A 244, 25–39 (1997).
  138. A model of mass extinction, M. E. J. Newman, J. Theor. Biol. 189, 235–252 (1997).
  139. Evidence for self-organized criticality in evolution, M. E. J. Newman, Physica D 107, 293–296 (1997).
  140. Diffusion constant for the repton model of gel electrophoresis, M. E. J. Newman and G. T. Barkema, Phys. Rev. E 56, 3468–3473 (1997).
  141. Monte Carlo study of the random-field Ising model, M. E. J. Newman and G. T. Barkema, Phys. Rev. E 53, 393–404 (1996).
  142. Avalanches, scaling, and coherent noise, M. E. J. Newman and Kim Sneppen, Phys. Rev. E 54, 6226–6231 (1996).
  143. Self-organized criticality, evolution, and the fossil extinction record, M. E. J. Newman, Proc. R. Soc. London B 263, 1605–1610 (1996).
  144. A model for evolution and extinction, B. W. Roberts and M. E. J. Newman, J. Theor. Biol. 180, 39–54 (1996).
  145. Mass-extinction: Evolution and the effects of external influences on unfit species, M. E. J. Newman and B. W. Roberts, Proc. R. Soc. London B 260, 31–37 (1995).
  146. Phason elasticity of a three-dimensional quasicrystal: transfer-matrix method, M. E. J. Newman and C. L. Henley, Phys. Rev. B 52, 6386–6399 (1995).
  147. Construction of periodic approximants for the canonical-cell model of a quasicrystal, M. E. J. Newman, C. L. Henley, and M. Oxborrow, Phil. Mag. B 71, 991–1013 (1995).
  148. A model for the shapes of islands and pits on (111) surfaces of fcc metals, G. T. Barkema, M. E. J. Newman, and M. Breeman, Phys. Rev. B 50, 7946–7951 (1994).
  149. Real-space renormalization group for the random-field Ising model, M. E. J. Newman, B. W. Roberts, G. T. Barkema, and J. P. Sethna, Phys. Rev. B 48, 16533–16538 (1993).
  150. Transfer-matrix analysis of the canonical-cell model of a quasicrystal, M. E. J. Newman and C. L. Henley, J. Non-cryst. Solids 153, 205–209 (1993).
  151. The Theory of Critical Phenomena, J. J. Binney, N. J. Dowrick, A. J. Fisher and M. E. J. Newman, Oxford University Press (1992).
  152. Green's functions, density of states and dynamic structure factor for a general one-dimensional quasicrystal, M. E. J. Newman, Phys. Rev. B 43, 10915–10927 (1991).
  153. Hopping conductivity of the Fibonacci-chain quasicrystal, M. E. J. Newman and R. B. Stinchcombe, Phys. Rev. B 43, 1183–1186 (1991).

Last modified: October 31, 2014

Mark Newman, mejn@umich.edu