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A complex system is a system composed of many interacting parts,often called agents, which displays collective
behavior that does not follow trivially from the behaviors of the individual parts. Examples include condensed
matter systems, ecosystems, stock markets and economies, biological evolution, and indeed the whole of human
society. Substantial progress has been made in the quantitative understanding of complex systems, particularly
since the 1980s, using a combination of basic theory, much of itderived from physics, and computer simulation.
The subject is a broad one, drawing on techniques and ideas from a wide range of areas. Here I give a short
survey of the main themes and methods of complex systems science and an annotated bibliography of resources,
ranging from classic papers to recent books and reviews.

I. INTRODUCTION

Complex systems is a relatively new and broadly interdisci-
plinary field that deals with systems composed of many inter-
acting units, often called “agents.” The foundational elements
of the field predate the current surge of interest in it, which
started in the 1980s, but substantial recent advances in thearea
coupled with increasing interest both in academia and indus-
try have created new momentum for the study and teaching of
the science of complex systems.

There is no precise technical definition of a “complex sys-
tem,” but most researchers in the field would probably agree
that it is a system composed of many interacting parts, such
that the collective behavior of those parts together is morethan
the sum of their individual behaviors. The collective behav-
iors are sometimes also called “emergent” behaviors, and a
complex system can thus be said to be a system of interacting
parts that displays emergent behavior.

Classic examples of complex systems include condensed
matter systems, ecosystems, the economy and financial mar-
kets, the brain, the immune system, granular materials, road
traffic, insect colonies, flocking or schooling behavior in birds
or fish, the Internet, and even entire human societies.

Unfortunately, complex systems are, as their name makes
clear, complex, which makes them hard to study and un-
derstand. Experimental observations are of course possible,
though these fall largely within the realm of the traditional
scientific disciplines and are usually not considered a partof
the field of complex systems itself, which is primarily devoted
to theoretical developments.

Complex systems theory is divided between two basic ap-
proaches. The first involves the creation and study of simpli-
fied mathematical models that, while they may not mimic the
behavior of real systems exactly, try to abstract the most im-
portant qualitative elements into a solvable framework from
which we can gain scientific insight. The tools used in such
studies include dynamical systems theory, information theory,
cellular automata, networks, computational complexity the-
ory, and numerical methods. The second approach is to cre-
ate more comprehensive and realistic models, usually in the
form of computer simulations, which represent the interact-
ing parts of a complex system, often down to minute details,
and then to watch and measure the emergent behaviors that

appear. The tools of this approach include techniques such as
Monte Carlo simulation and, particularly, agent-based simu-
lation, around which a community of computer scientists and
software developers has grown up to create software tools for
sophisticated computational research in complex systems.

This review focuses on the methods and theoretical tools
of complex systems, including both the modeling and simu-
lation approaches above, though I also include a short section
of references to individual specific complex systems, such as
economies or ecosystems, which can serve as a concrete foun-
dation motivating the theoretical studies.

II. GENERAL REFERENCES

Complex systems is a relatively young subject area and one
that is evolving rapidly, but there are nonetheless a number
of general references, including books and reviews, that bring
together relevant topics in a useful way.1

A. Books

The first two books listed are elementary and require little
mathematics for their comprehension. The first, by Mitchell,
is recent and aimed at the popular audience. The second is
older but wider ranging and contains more technical content.

1. Complexity: A Guided Tour , M. Mitchell (Oxford University
Press, Oxford, 2009). (E)

2. The Computational Beauty of Nature, G. W. Flake (MIT
Press, Cambridge, MA, 1998). (E)

The following three books are more advanced. Each cov-
ers important topics in complex systems, but none covers the
field comprehensively. The authors of the second book are
economists rather than physicists and their book has, as a re-
sult, more of a social science flavor. The book by Mandelbrot

1 Each reference in this paper is labeled “(E)”, “(I)”, or “(A),” to denoted
elementary, intermediate, or advanced material.
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is, by now, quite old, predating “complex systems” as a rec-
ognized field, but is considered a classic and very readable,
although not all of the ideas it contains have become accepted.

3. Modeling Complex Systems, N. Boccara (Springer, New York,
NY, 2004). (I)

4. Complex Adaptive Systems, J. H. Miller and S. E. Page
(Princeton University Press, Princeton, 2007). (I)

5. The Fractal Geometry of Nature, B. B. Mandelbrot (W. H.
Freeman, New York, 1983). (I)

B. Journals

A number of journals focus specifically on complex sys-
tems, of which the best known are

Advances in Complex Systems
Complexity
Complex Systems

However, the vast majority of research on complex systems is
not published in these journals, but appears either in subject-
specific journals, such as physics journals, or in general sci-
ence journals. Some of the most prominent physics journals
publishing on complex systems are

Chaos, Solitons, and Fractals
Europhysics Letters
European Physical Journal B
Nature Physics
Physical Review E
Physical Review Letters
Physica A
Physica D

Among general science journals,Science, Nature, andPro-
ceedings of the National Academy of Sciencesall publish reg-
ularly on complex systems.

III. EXAMPLES OF COMPLEX SYSTEMS

Many individual complex systems are studied intensively
within their own academic fields—ecosystems in ecology,
stock markets in finance and business, and so forth. It is not
the purpose of this paper to review this subject-specific litera-
ture, but this section outlines some of the literature on specif-
ically complex-systems approaches to individual systems.

Physical systems: Although they are not always thought of in
that way, many physical systems, and particularly those stud-
ied in condensed matter and statistical physics, are true ex-
amples of complex systems. Physical systems that fall within
the realm of complex systems science include classical con-
densed matter systems such as crystals, magnets, glasses, and
superconductors; hydrodynamical systems including classi-
cal (Newtonian) fluids, nonlinear fluids, and granular flows;

spatiotemporal pattern formation in systems like chemicalos-
cillators and excitable media; molecular self-assembly, in-
cluding tiling models, biomolecules, and nanotechnological
examples; biophysical problems such as protein folding and
the physical properties of macromolecules; and physical sys-
tems that perform computation, including analog and quantum
computers. It is perhaps in condensed matter physics that the
fundamental insight motivating the study of complex systems
was first clearly articulated, in the classic 1972 article byAn-
derson:

6. “More is different,” P. W. Anderson, Science177, 393–396
(1972). In this paper Anderson points out the misconception of ba-
sic physical theories, such as quantum mechanics, as “theories of
everything.” Although such theories do, in principle, explain the ac-
tion of the entire universe, the collective behaviors of particles or
elements in a complex system often obey emergent physical laws—
like the equation of state of a gas, for instance—that cannot be de-
rived easily (or in some cases at all) from the underlying microscopic
theory. In other words, there are physical laws at many “levels” in
the phenomenology of the universe, and only one of those levels is
described by fundamental theories like quantum mechanics. To un-
derstand the others, new theories are needed. (E)

Many of the physicists who have made careers working on
complex systems got their start in condensed matter physics,
and an understanding of that field will certainly help the reader
in understanding the ideas and language of complex systems
theory. Two recent books written by physicists directly in-
volved in research on complex systems are:

7. Statistical Mechanics: Entropy, Order Parameters and Com-
plexity, J. P. Sethna (Oxford University Press, Oxford, 2006). This
book is accompanied by a set of online programs and simulations
that are useful for explaining and understanding some of the con-
cepts. (A)

8. Advanced Condensed Matter Physics, L. M. Sander (Cam-
bridge University Press, Cambridge, 2009). (A)

Both are sophisticated treatments, but for the mathemati-
cally inclined reader these books provide a good starting point
for understanding physical theories of complex systems.

Ecosystems and biological evolution:The biosphere, both in its
present state and over evolutionary history, presents an end-
lessly fascinating picture of a complex system at work.

9. Signs of Life: How Complexity Pervades Biology, R. Soĺe and
B. Goodwin (Basic Books, New York, 2002). A good introduction,
which includes some significant mathematical elements, but confines
the most challenging of them to sidebars. The authors are a physi-
cist and a biologist, and the combination makes for a book that is
accessible and relevant to those interested in how physics thinking
can contribute outside of the traditional boundaries of physics. (I)

10. Evolutionary Dynamics: Exploring the Equations of Life,
M. A. Nowak (Belknap Press, Cambridge, MA, 2006). A more
technical work that also includes an introduction, in the biological
arena, to several of the areas of complex systems theory discussed
later in this paper. (I)

The following two papers provide useful discussions from
the ecology viewpoint:
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11. “Ecosystems and the biosphere as complex adaptive systems,”
S. A. Levin, Ecosystems1, 431–436 (1998). (I)

12. “Understanding the complexity of economic, ecological, and
social systems,” C. S. Holling, Ecosystems4, 390–405 (2001). As
its title suggests, this article provides a comparative review of ecosys-
tems along side economies and human societies, from the viewpoint
of an ecologist. (I)

Some classic works in complex systems also fall into the
areas of ecology and evolutionary biology:

13. “Will a large complex system be stable?” R. M. May, Nature
238, 413–414 (1972). This important early paper applies complex
systems ideas to the stability of ecosystems, and is a significant pre-
cursor to more recent work in network theory (see Section IV.A). (A)

14. “Towards a general theory of adaptive walks on rugged land-
scapes,” S. A. Kauffman and S. Levin, J. Theor. Bio.128, 11–45
(1987). In this paper, Kauffman and Levin described for the first
time their NK model, which is now one of the standard models of
macroevolutionary theory. (A)

15. At Home in the Universe, S. A. Kauffman (Oxford Univer-
sity Press, Oxford, 1995). This later book by Kauffman gives an
accessible introduction to the NK model. (E)

Human societies: Human societies of course have many as-
pects to them, not all of which are amenable to study by
quantitative methods. Three aspects of human societies, how-
ever, have proved of particular interest to scientists working on
complex systems: (1) urban planning and the physical struc-
ture of society, (2) the social structure of society and social
networks, and (3) differences between societies as revealed
by sociological experiments. I address the first two of thesein
this section. Experimental approaches are addressed in Sec-
tion IV.E.

One of the most influential works on urban planning is the
1961 book by Jacobs which, while predating modern ideas
about complex systems, has nonetheless inspired many of
those ideas. It is still widely read today:

16. The Death and Life of Great American Cities, J. Jacobs
(Random House, New York, 1961). (E)

The following papers provide a sample of recent work on
urban societies viewed as complex systems. The articles by
Bettencourtet al., which address the application of scaling
theory to urban environments, have been particularly influen-
tial, although their results are not universally accepted.The
first is at a relatively high technical level while second is a
non-technical overview. I discuss scaling theory in more de-
tail in Section IV.D.

17. “The size, scale, and shape of cities,” M. Batty, Science319,
769–771 (2008). Batty is an architect who has in recent years
championed the application of complex systems theory in urban
planning. In this nontechnical article he gives an overview of current
ideas, drawing on spatial models, scaling, and network theory. (E)

18. Cities and complexity, M. Batty (MIT Press, Cambridge, MA,
2007). In this book Batty expands widely on the topic of his article
above. Although technical, the book is approachable and the author
makes good use of models and examples to support his ideas. (I)

19. “Growth, innovation, scaling, and the pace of life in cities,”
L. M. A. Bettencourt, J. Lobo, D. Helbing, C. K̈uhnert, and G. B.
West, Proc. Natl. Acad. Sci. USA104, 7301–7306 (2007). The
work of Bettencourt and collaborators on the application of scaling
theory to the study of urban environments has been particularly in-
fluential. They find that a wide variety of parameters describing the
physical structure of US cities show “power-law” behavior. Power
laws are discussed further in Section IV.D. (A)

20. “A unified theory of urban living,” L. M. A. Bettencourt and
G. B. West, Nature467, 912–913 (2010). This nontechnical paper
discusses the motivations and potential rewards of applying complex
systems approaches to urban planning. (E)

Turning to social networks, there has been a substantial vol-
ume of work on networks in general by complex systems re-
searchers, which we review in Section IV.A, but there is also
an extensive literature on human social networks in sociology,
which, while not specifically aimed at readers in complex sys-
tems, nonetheless contains much of interest. The two books
below are good general references. The article by Watts pro-
vides an interesting perspective on what complex systems the-
ory has to add to a field of study that is now almost a hundred
years old.

21. Social Network Analysis: A Handbook, J. Scott (Sage, Lon-
don, 2000), 2nd edition. (I)

22. Social Network Analysis, S. Wasserman and K. Faust (Cam-
bridge University Press, Cambridge, 1994). (A)

23. “The ‘new’ science of networks,” D. J. Watts, Annual Review
of Sociology30, 243–270 (2004). (I)

Economics and markets:Markets are classic examples of com-
plex systems, with manufacturers, traders, and consumers in-
teracting to produce the emergent phenomenon we call the
economy. Physicists and physics-style approaches have made
substantial contributions to economics and have given riseto
the new subfield of “econophysics,” an area of lively current
research activity.

24. An Introduction to Econophysics: Correlations and Com-
plexity in Finance, R. N. Mantegna and H. E. Stanley (Cambridge
University Press, Cambridge, 1999). This book is a standard refer-
ence in the area. (I)

25. Why Stock Markets Crash: Critical Events in Complex Fi-
nancial Systems, D. Sornette (Princeton University Press, Prince-
ton, 2004). Though it addresses primarily financial markets, and
not economics in general, this highly-regarded book is a good exam-
ple of the physics approach to these problems. (I)

26. “Is economics the next physical science?” J. D. Farmer,
M. Shubik, and E. Smith, Physics Today58 (9), 37–42 (2005). An
approachable introductory paper that asks what physics can con-
tribute to our understanding of economic and financial problems. (E)

A fundamental debate that has characterized the influence
of complex systems ideas on economics is the debate over
the value of the traditional “equilibrium” models of mathe-
matical economics, as opposed to newer approaches based on
ideas such as “bounded rationality” or on computer simulation
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methods. A balanced overview of the two viewpoints is given
by Farmer and Geanakoplos.

27. “The virtues and vices of equilibrium and the future of financial
economics,” J. D. Farmer and J. Geanakoplos, Complexity14 (3),
11–38 (2009). (E)

A number of books have also appeared that make con-
nections between economic theory and other areas of inter-
est in complex systems. A good recent example is the book
by Easley and Kleinberg, which draws together ideas from
a range of fields to help illuminate economic behaviors and
many other things in a lucid though quantitative way.

28. Networks, Crowds, and Markets, D. Easley and J. Kleinberg
(Cambridge University Press, Cambridge, 2010). (E)

Pattern formation and collective motion:In two- or three-
dimensional space the interactions of agents in a complex sys-
tem can produce spatial patterns of many kinds and systems
that do this are seen in many branches of science, includ-
ing physics (e.g., Rayleigh–Bénard convection, diffusion lim-
ited aggregation), chemistry (the Belousov–Zhabotinsky reac-
tion), and biology (embryogenesis, bacterial colonies, flock-
ing and collective motion of animals and humans). The paper
by Turing below is one of the first and best-known efforts to
develop a theory of pattern formation in the context of bio-
logical morphogenesis, and a classic in the complex systems
literature. The book by Winfree is an unusual and thought-
provoking point of entry into the literature that makes rel-
atively modest mathematical demands of its reader (and ad-
dresses many other topics in addition to pattern formation).

29. “The chemical basis of morphogenesis,” A. M. Turing, Phil.
Trans. R. Soc. London B237(37-72) (1952). (A)

30. The Geometry of Biological Time, A. T. Winfree (Springer,
New York, 2000), 2nd edition. (I)

Collective motions of self-propelled agents, such as road
and pedestrian traffic and animal flocking, have been actively
studied using methods from physics. Vehicular traffic shows
a number of interesting behaviors that emerge from the col-
lective actions of many drivers, like the propagation of traf-
fic disturbances such as tailbacks in the opposite directionto
traffic flow, and the so-called jamming transition, where cars’
speeds drop suddenly as traffic density passes a critical point.
Some similar phenomena are visible in pedestrian traffic as
well, although pedestrians are not always confined to a one-
dimensional road the way cars are, and the added freedom can
give rise to additional phenomena.

31. “A cellular automaton model for freeway traffic,” K. Nagel and
M. Schreckenberg, J. Phys. I France2, 2221–2229 (1992). The
classic Nagel–Schreckenberg model of road traffic is a beautiful ex-
ample of the application of now-standard ideas from complex sys-
tems theory to a real-world problem. The model is a “cellular au-
tomaton” model. Cellular automata are discussed further in Sec-
tion IV.C. (I)

32. “Traffic and related self-driven many-particle systems,” D. Hel-
bing, Rev. Mod. Phys.73, 1067–1141 (1997). The Nagel–

Schreckenberg model and many other models and theories of traffic
flow are examined in detail in this extensive review by Helbing. (I)

Flocking or schooling in birds or fish is a cooperative phe-
nomenon in which the animals in a flock or school collectively
fly or swim in roughly the same direction, possibly turning as
a unit. It’s believed that animals achieve this by simple self-
enforced rules that involve copying the actions of their nearby
neighbors while at the same time keeping a safe distance.

33. “Novel type of phase transition in a system of self-driven parti-
cles,” T. Vicsek, A. Cziŕok, E. Ben-Jacob, I. Cohen, and O. Shochet,
Phys. Rev. Lett.75, 1226–1229 (1995). This paper introduces what
is now the best studied model of flocking behavior, and a good exam-
ple of a drastic but useful simplification of a complex problem. (A)

34. “Collective motion,” T. Vicsek and A. Zafiris, Rev. Mod. Phys.
(in press). This recent review summarizes progress on theories of
flocking. (I)

35. “Effective leadership and decision-making in animal groups on
the move,” I. D. Couzin, J. Krause, N. R. Franks, and S. A. Levin,
Nature433, 513–516 (2005). Another good example of the use of a
simplified model to shed light on a complex phenomenon, this paper
shows how the coordinated movement of a large group of individuals
can self-organize to effectively achieve collective goals even when
only a small fraction of individuals know where they are going. (I)

36. “Empirical investigation of starling flocks: A benchmark study
in collective animal behaviour,” M. Ballerini, N. Cabibbo, R. Can-
delier, A. Cavagna, E. Cisbani, I. Giardina, A. Orlandi, G. Parisi,
A. Procaccini, M. Viale, and V. Zdravkovic, Animal Behaviour76,
201–215 (2008). An interesting recent development in the study of
flocking is the appearance of quantitative studies of large flocks of
real birds using video techniques. This paper describes a collabora-
tive project that brought together field studies with theories based on
ideas from statistical and condensed matter physics. (I)

IV. COMPLEX SYSTEMS THEORY

The remainder of this review deals with the general the-
ory of complex systems. Perhaps “general theories” would be
a better term, since complex systems theory is not a mono-
lithic body of knowledge. Borrowing an analogy from Doyne
Farmer of the Santa Fe Institute, complex systems theory is
not a novel, but a series of short stories. Whether it will one
day become integrated to form a single coherent theory is a
matter of current debate, although my belief is that it will not.

A. Lattices and networks

The current theories of complex systems typically envis-
age a large collection of agents interacting in some specified
way. To quantify the details of the system one must spec-
ify first its topology—who interacts with whom—and then its
dynamics—how the individual agents behave and how they
interact.

Topology is usually specified in terms of lattices or net-
works, and this is one of the best developed areas of com-
plex systems theory. In most cases, regular lattices need lit-
tle introduction—almost everyone knows what a chess board
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looks like. Some models built on regular lattices are consid-
ered in Section IV.C. Most complex systems, however, have
more complicated non-regular topologies that require a more
general network framework for their representation.

Several books on the subject of networks have appeared in
recent years. The book by Watts below is at a popular level,
although it contains a small amount of mathematics. The book
by Newman is lengthy and covers many aspects in technical
detail; the book by Cohen and Havlin is shorter and more se-
lective. I also list two reviews, one brief and one encyclopedic,
of research in the field, for advanced readers.

37. Six Degrees: The Science of a Connected Age, D. J. Watts
(Norton, New York, 2003). (E)

38. Networks: An Introduction , M. E. J. Newman (Oxford Uni-
versity Press, Oxford, 2010). (I)

39. Complex Networks: Structure, Stability and Function,
R. Cohen and S. Havlin (Cambridge University Press, Cambridge,
2010). (I)

40. “Exploring complex networks,” S. H. Strogatz, Nature410,
268–276 (2001). (A)

41. “Complex networks: Structure and dynamics,” S. Boccaletti,
V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang, Physics Reports
424, 175–308 (2006). (A)

The book by Easley and Kleinberg cited above, Refs. 28,
also includes material on networks.

B. Dynamical systems

Turning to the behavior of the agents in a complex system,
many different theories have been developed. One of the most
mature is dynamical systems theory, in which the behaviors of
agents over time are represented individually or collectively
by simple mathematical models, coupled together to repre-
sent interactions. Dynamical systems theory is divided into
continuous dynamics, addressed in this section, and discrete
dynamics, addressed in the following one.

Continuous dynamical systems are typically modeled using
differential equations and show a number of emergent behav-
iors that are characteristic of complex systems, such as chaos
and bifurcations (colorfully referred to as “catastrophes” in
the 1970s, although this nomenclature has fallen out of favor).
Three elementary references are the following:

42. Sync: The Emerging Science of Spontaneous Order, S. Stro-
gatz (Hyperion, New York, 2003). A popular book introducing
some of the basic ideas of dynamical systems theory by one of the pi-
oneers of the field. The book focuses particularly on the phenomenon
of synchronization, but also includes useful material on other topics
in the field. (E)

43. Chaos and Fractals, H.-O. Peitgen, H. J̈urgens, and D. Saupe
(Springer, Berlin, 2004). A lavishly illustrated introduction suitable
for undergraduates or even advanced high-school students. (E)

44. Dynamics: The Geometry of Behavior, R. Abraham and
C. D. Shaw (Addison-Wesley, Reading, MA, 1992), 2nd edition.
This unusual book is, sadly, out of print now, though one can still find
it in libraries. It is essentially a picture book or comic illustrating the
principles of dynamical systems. The field being one that lends itself

well to visual representation, this turns out to be an excellent way to
grasp many of the basic ideas. (E)

There are also many more advanced sources for material on
dynamical systems, including the following.

45. Nonlinear Dynamics and Chaos, S. H. Strogatz (Addison-
Wesley, Reading, MA, 1994). A substantial college-level text on
the standard methods of dynamical systems theory. (I)

46. “Deterministic nonperiodic flow,” E. N. Lorenz, J. Atmos. Sci.
20, 130–141 (1963). This is a classic in the field, the first paper to
really spell out the origin of chaotic behavior in a simple system, and
is clear and well written, although it requires a strong mathematical
background. (A)

47. “Controlling chaos,” E. Ott, C. Grebogi, and J. A. Yorke, Phys.
Rev. Lett. 64, 1196–1199 (1990). Another seminal paper in the
field, which studies the technically important subject of controlling
chaotic systems. (A)

C. Discrete dynamics and cellular automata

Discrete dynamical systems, those whose evolution in time
progresses via a succession of discrete “time steps,” were
a subject of considerable research interest in the 1970s and
1980s. A classic example is the logistic map, which dis-
plays a transition (actually several transitions) from an ordered
regime to a chaotic one that inspired a substantial literature on
the “edge of chaos” in complex systems.

48. “Simple mathematical models with very complicated dynam-
ics,” R. M. May, Nature261, 459–467 (1976). A classic pedagogi-
cal review of the logistic map and similar discrete dynamical systems
from one of the fathers of complex systems theory. The mathematics
is elementary in principle, involving only algebra and no calculus,
but some of the concepts are nonetheless quite tricky to visualize. (I)

49. “Universal behavior in nonlinear systems,” M. J. Feigenbaum,
Physica D7, 16–39 (1983). In 1978 Mitchell Feigenbaum proved
one of the most important results in dynamical systems theory, the
existence of universal behavior at the transition to chaos, deriving
in the process a value for the quantity now known as Feigenbaum’s
constant. His original research papers on the topic are technically
challenging, but this later paper is relatively approachable and pro-
vides a good outline of the theory. (I)

A pedagogical discussion of Feigenbaum’s theory can also
be found in the book by Strogatz, Ref. 45 above.

Dynamical systems that are discrete in both time and space
are calledcellular automata, or CAs for short, and these fall
squarely into the realm of complex systems, being precisely
systems of many interacting agents. The simplest and best
studied cases are on lattices, although cellular automata with
other geometries are also studied. Well known examples of
cellular automata include J. H. Conway’s “Game of Life,” the
“Rule 110” automaton, which is capable of universal compu-
tation, and the Nagel–Schreckenberg traffic model mentioned
in Section III.

50. “Mathematical Games: The fantastic combinations of John
Conway’s new solitaire game “life”,” M. Gardner, Scientific Amer-
ican 223, 120–123 (1970). One of Martin Gardner’s excellent
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“Mathematical Games” columns forScientific American, in which
the most famous CA of them all, Conway’s Game of Life, made its
first appearance. Decades later the article is still an excellent intro-
duction. (E)

51. Winning Ways for Your Mathematical Plays, J. H. Conway,
R. K. Guy, and E. R. Berlekamp, volume 2 (A. K. Peters, Natick,
MA, 2003), 2nd edition. This is the second of four excellent vol-
umes about games—such as board games and card games—and their
mathematical analysis, originally published in the 1980s but recently
republished. It contains a thorough discussion of the Game of Life,
which was invented by one of the book’s authors. (I)

52. Brainchildren: Essays on Designing Minds, D. C. Dennett
(MIT Press, Cambridge, MA, 1998). This book is not, principally,
a book about CAs and its author is not principally a CA researcher,
but the chapter entitled “Real Patterns” is an excellent introduction
not only to CAs but also to why those who study complex systems
are interested in them as models of processes in the wider world. (E)

53. A New Kind of Science, S. Wolfram (Wolfram Media, Cham-
paign, IL, 2002). Most of this large volume is devoted to a discus-
sion of Wolfram’s research, but the first part of the book, particularly
the first hundred pages or so, provides a very readable introduction
to CAs, laying out the basics of the field clearly while making only
modest mathematical demands of the reader. (I)

54. “Studying artificial life with cellular automata,” C. G. Langton,
Physica D22, 120–149 (1986). An influential early paper on the
theory of cellular automata, which made connections with other ar-
eas of complex systems research, including chaos theory and “artifi-
cial life” (see Section IV.H). Among other things, the paper contains
some (in retrospect) rather charming figures of simulation results,
created by directly photographing the screen of a computer termi-
nal. (I)

55. Cellular Automata: A Discrete Universe, A. Ilachinski
(World Scientific, Singapore, 2001). For the advanced reader this
book provides most of what one might want to know about cellular
automata. (A)

Chapter 11 of the book by Mitchell, Ref. 1, also provides
a good overview of the study of cellular automata. For those
interested in pursuing the topic further, an excellent and enter-
taining resource is the free computer programGolly, by An-
drew Trevorrow and Tomas Rokicki, which simulates a wide
range of cellular automata and illustrates their dynamics with
instructive and elegant computer graphics.

D. Scaling and criticality

Among the fundamental tools in the theory of complex sys-
tems, some of the most important have been the physical ideas
of scaling, phase transitions, and critical phenomena. Oneex-
ample of their application is mentioned above, the study by
Feigenbaum of critical behavior in discrete dynamical systems
at the “edge of chaos,” Ref. 49, but there are many others.

A startling phenomenon observed in a number of com-
plex systems is the appearance of “power-law” distributions
of measured quantities. Power-law distributions are said to
“scale” or “show scaling” because they retain their shape even
when the measured quantity is “rescaled,” meaning it is mul-
tiplied by a constant. The observation and origin of power
laws and scaling in complex systems has been a subject of

discussion and research for many decades. The following two
papers provide general overviews of the area:

56. “A brief history of generative models for power law and lognor-
mal distributions,” M. Mitzenmacher, Internet Mathematics1, 226–
251 (2004). (I)

57. “Power laws, Pareto distributions and Zipf’s law,” M. E. J.
Newman, Contemporary Physics46, 323–351 (2005). (I)

Power laws have been the topic of some of the most influ-
ential publications in complex systems theory, going back as
far as the work of Pareto in the 1890s. The mechanisms for
power-law behavior have been a particular focus of interest
and the claim has been made that there may be a single math-
ematical mechanism responsible for all power laws and hence
a unified theory of complex systems that can be built around
that mechanism. One candidate for such a universal mech-
anism is “self-organized criticality.” Current thinking,how-
ever, is that there are a number of different mechanisms for
power-law behavior, and that a unified theory probably does
not exist.

58. “On a class of skew distribution functions,” H. A. Simon,
Biometrika42, 425–440 (1955). One of the first, and still most im-
portant, mechanisms suggested for power laws, the “rich get richer”
or “preferential attachment” mechanism. Simon was the first to write
down the theory in its modern form, although many of the ideas were
present in significantly earlier work: see for instance “A mathemati-
cal theory of evolution based on the conclusions of Dr. J. C. Willis,”
G. U. Yule, Philos. Trans. R. Soc. London B213, 21–87 (1925). (A)

59. “Self-organized criticality: An explanation of the 1/ f noise,”
P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. Lett.59, 381–
384 (1987). Physicists have long been aware that physical systems
tuned precisely to a special “critical point” will display power-law
behavior, but on its own this appears to be a poor explanation for
power laws in naturally occurring complex systems, since such sys-
tems will not normally be tuned to the critical point. Baket al. in
this paper proposed an ingenious way around this problem, pointing
out that certain classes of system tune themselves to the critical point
automatically, simply by the nature of their dynamics. This process,
dubbed “self-organized criticality” is illustrated in this paper with a
cellular automaton model, the “self-organizing sandpile.” (A)

60. “Robust space–time intermittency and 1/ f noise,” J. D. Keeler
and J. D. Farmer, Physica D23, 413–435 (1986). Sometimes over-
looked in the literature on self-organized criticality, this paper actu-
ally preceded the paper by Baket al. by more than a year and de-
scribed many of the important concepts that formed the basis for the
approach of Baket al. (A)

61. “Self-organized critical forest-fire model,” B. Drossel and
F. Schwabl, Phys. Rev. Lett.69, 1629–1632 (1992). Perhaps the
simplest of self-organized critical models is the forest fire model of
Drossel and Schwabl. Although it came after the sandpile model of
Bak et al. it is easier to understand and may make a better starting
point for understanding the theory. (A)

62. How Nature Works: The Science of Self-Organized Criti-
cality, P. Bak (Copernicus, New York, 1996). A self-contained and
readable, if somewhat partisan, introduction to the science of self-
organized criticality, written by the theory’s greatest champion. (E)

63. “Highly optimized tolerance: A mechanism for power laws in
designed systems,” J. M. Carlson and J. Doyle, Phys. Rev. E60,
1412–1427 (1999). An alternative general theory for the appear-
ance of power laws is the “highly optimized tolerance” (HOT) the-
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ory of Carlson and Doyle. While its inventors would not claim it as
an explanation of all power laws, it may well be a better fit to ob-
servations than self-organized criticality in some cases. This paper
introduces the best-known model in the HOT class, the “highly op-
timized forest fire” model, which is analogous to the self-organized
forest fire model above. (I)

64. “A general model for the origin of allometric scaling laws in bi-
ology,” G. B. West, J. H. Brown, and B. J. Enquist, Science276, 122–
126 (1997). Perhaps the biggest stir in this area in recent years has
been created by the theory of biological allometry, i.e., power-law
scaling in biological organisms, put forward by Westet al. This is
the original paper on the theory, although Westet al.have published
many others since. (A)

65. “Life’s universal scaling laws,” G. B. West and J. H. Brown,
Physics Today57 (9), 36–42 (2004). A general introduction to the
theory of Westet al. for physicists. (E)

The book by Mandelbrot, Ref. 5, is also an important his-
torical reference on this topic, making a connection between
power laws and the study of fractals—curves and shapes hav-
ing non-integer dimension.

E. Adaptation and game theory

A common property of many though not all complex sys-
tems is adaptation, meaning that the collective behavior ofthe
agents in the system results in the optimization of some fea-
ture or quantity. Biological evolution by means of natural se-
lection is the classic example: evolution takes place as a result
of the competition among the members of a breeding popu-
lation for resources and is thus exclusively a result of agent
interactions—precisely an emergent phenomenon in the com-
plex systems sense.

Complex systems displaying adaptation are sometimes
called “complex adaptive systems.” In constructing theories
and models of complex adaptive systems the fundamental
concept is that of “fitness,” a measure or value that conveys
how well an individual, group, species, or strategy is doingin
comparison to the competition, and hence how likely it is to
thrive. In the simplest models, one posits a fitness function
that maps descriptive parameters, such as body size or for-
aging strategy, to fitness values and then looks for parameter
values that maximize the fitness.

The following three books are not specifically about com-
plex systems, but nonetheless all provide an excellent back-
ground for the reader interested in theories of adaptation.

66. The Theory of Evolution, J. Maynard Smith (Cambridge Uni-
versity Press, Cambridge, 1993), 3rd edition. This updated version
of Maynard Smith’s widely read introduction to evolutionary theory
is still a good starting point for those who want to know the basics. (I)

67. Climbing Mount Improbable , R. Dawkins (Norton, New
York, 1997). Dawkins is one of the best known science writers of
the last century and his many books on evolutionary biology have
been particularly influential. His earlier bookThe Selfish Geneis,
after Darwin’sOrigin of Species, perhaps the most influential book
written about evolution.Climbing Mount Improbableis more ele-
mentary and, for the beginner, an excellent introduction to our cur-
rent understanding of the subject. (E)

68. The Structure of Evolutionary Theory , S. J. Gould (Belknap
Press, Cambridge, MA, 2002). (I)

Biologically derived ideas concerning adaptation have also
inspired applications in computer science, wherein practition-
ers arrange for programs or formulas to compete against one
another to solve a problem, the winners being rewarded with
“offspring” in the next generation that then compete again.
Over a series of generations one can use this process to evolve
good solutions to difficult problems. The resulting method,
under the namesgenetic algorithmsor genetic programming,
has become a widely used optimization scheme and a frequent
tool of complex systems researchers.

69. “Genetic algorithms,” J. H. Holland, Scientific American
267(1), 66–72 (1992). A nontechnical introduction to genetic algo-
rithms by their originator and greatest proponent, John Holland. (E)

70. “Evolving inventions,” J. R. Koza, M. A. Keane, and M. J.
Streeter, Scientific American288 (2), 52–59 (1992). A discus-
sion of genetic programming, which is the application of genetic-
algorithm-type methods directly to the evolution of computer soft-
ware. (E)

71. Introduction to Genetic Algorithms , M. Mitchell (MIT Press,
Cambridge, MA, 1996). Although relatively old, Mitchell’s book
on genetic algorithms is probably still the foremost general text on
the subject and a good resource for those looking for more depth. (A)

While fitness can depend on simple physical parameters
like body size, significant contributions to fitness at the or-
ganismal level often come from the behaviors of agents—the
way they interact with each other and their environment. The
mapping between the parameters of behavior and the fitness
is typically a complex one and a body of theory has grown up
to shed light on it. This body of theory goes under the name
of game theory.

A “game,” in this sense, is any scenario in which “players”
choose from a set of possible moves and then receive scores
or “payoffs” based on the particular choice of moves they and
the other players made. Game theory is used in the context of
biological evolution to model mating strategies, in economics
as a model of the behavior of traders in markets, in sociology
to model individuals’ personal, financial, and career decisions,
and in a host of other areas ranging from ecology and political
science to computer science and engineering.

Although almost a quarter of a century old, Morton Davis’s
“nontechnical introduction” to game theory remains a good
starting point for those interested in understanding the ideas
of game theory without getting into a lot of mathematics. The
book has been recently reprinted in an inexpensive paperback
edition that makes it a good buy for students and researchers
alike. For a more mathematical introduction, the book by My-
erson is a classic, written by one of the leading researchers
in the field, while the book by Watson gives a lucid modern
presentation of the material.

72. Game Theory: A Nontechnical Introduction, M. D. Davis
(Dover, New York, 1997). (E)

73. Game Theory: Analysis of Conflict, R. B. Myerson (Harvard
University Press, Cambridge, MA, 1997). (A)
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74. Strategy: An Introduction to Game Theory, J. Watson (Nor-
ton, New York, 2007), 2nd edition. (I)

The book by Nowak, Ref. 10, also provides an introduc-
tion to game theoretical methods specifically in the area of
biological evolution, while the book by Easley and Kleinberg,
Ref. 28, includes a discussion of games played on networks.

Some specific topics within game theory are so important
and widely discussed that a knowledge of them is a must for
anyone interested in the area.

75. The Evolution of Cooperation, R. Axelrod (Basic Books,
New York, 2006). The “prisoner’s dilemma” is probably the best
known (and also one of the simplest) of game theoretical examples.
A famous event in the history of game theory is the contest orga-
nized by Robert Axelrod in which contestants devised and submitted
strategies for playing the (iterated) prisoner’s dilemma game against
one another. Among a field of inventive entries, the contest was won
by mathematical biologist Anatol Rapoport using an incredibly sim-
ple strategy called “tit-for-tat,” in which on each round of the game
the player always plays the same move their opponent played on the
previous round. Axelrod uses this result as a starting point to explain
why people and animals will sometimes cooperate with one another
even when it is, at first sight, not in their own best interests. (E)

76. “Emergence of cooperation and organization in an evolutionary
game,” D. Challet and Y.-C. Zhang, Physica A246, 407–418 (1997).
The minority game, proposed by physicists Challet and Zhang, is
a remarkably simple game that nonetheless shows complex and in-
triguing behavior. In this game a population ofn players, wheren
is odd, repeatedly choose one of two alternative moves, move 1 or
move 2. On any one round of the game you win if your choice is in
the minority, i.e., if fewer players choose the same move as you than
choose the alternative. It’s clear that there is no universal best strat-
egy for playing this game since if there were everyone would play it,
and then they’d all be in the majority and would lose. The minority
game is a simplified version of an earlier game proposed by Brian
Arthur, usually called theEl Farol problem, in honor of a famous bar
of that name in Santa Fe, New Mexico. (A)

77. The Bounds of Reason: Game Theory and the Unification
of the Behavioral Sciences, H. Gintis (Princeton University Press,
Princeton, NJ, 2009). An intriguing line of work in the last couple
of decades has been the development of experimental game theory
(also called behavioral game theory or experimental economics), in
which instead of analyzing games theoretically, experimenters get
real people to play them and record the results. The remarkable find-
ing is that, although for many of these games it is simple to determine
the best move—even without any mathematics—people often don’t
play the best move. Even if the experimenters offer real money in re-
turn for winning plays, people routinely fail to comprehend the best
strategy. Results of this kind form the basis for the economic theory
of “bounded rationality,” which holds that it is not always correct to
assume that people act in their own best interests with full knowl-
edge of the consequences of their actions. (This may seem like an
obvious statement, but it is a surprisingly controversial point in eco-
nomics.) (A)

F. Information theory

Information theory is not usually regarded as a part of com-
plex systems theory itself, but it is one of the tools most fre-
quently used to analyze and understand complex systems. As

its name suggests, information theory describes and quantifies
information and was originally developed within engineering
as a way to understand the capabilities and limitations of elec-
tronic communications. It has found much wider application
in recent years, however, including applications to the analysis
of patterns of many kinds. A pattern is precisely recognizable
as a pattern because its information content islow. For in-
stance, there is little information in a periodically repeating
sequence of symbols, numbers, colors, etc. If we can accu-
rately predict the next symbol in a sequence then that symbol
contains little information since we knew what it was going
to be before we saw it. This idea and its extensions has been
applied to the detection of patterns in DNA, in networks, in
dynamical systems, on the Internet, and in many kinds of ex-
perimental data.

78. An Introduction to Information Theory , J. R. Pierce (Dover,
New York, 1980), 2nd edition. Although relatively old, this book is
still the best introduction to information theory for the beginner. The
subject requires some mathematics for its comprehension, but the
level of mathematical development in Pierce’s book is quite mod-
est. (I)

79. Elements of Information Theory, T. M. Cover and J. A.
Thomas (John Wiley, New York, 1991). A thorough introduction
to modern information theory, this book demands some mathemati-
cal sophistication of the reader. (A)

80. “A mathematical theory of communication I,” C. E. Shannon,
Bell System Technical Journal27, 379–423 (1948). The original
paper by the father of information theory, Claude Shannon, in which
he lays out the theory, in remarkably complete form, for the first
time. As well as being the first paper on the topic, this is also a well-
written and palatable introduction for those willing to work through
the mathematics. (A)

An active area of current research in complex systems is the
application of information theory to measure the complexity
of a system. This work aims to answer quantitatively the ques-
tion, “What is a complex system?” by creating a measure that
will, for instance, take a large value when a system is com-
plex and a small one when it is not. One of the best-known
examples of such a measure is the Kolmogorov complexity,
which is defined as the length of the shortest computer pro-
gram (in some agreed-upon language) that will generate the
system of interest or a complete description of it. If a sys-
tem is simple to describe then a short program will suffice
and the Kolmogorov complexity is low. If a larger program
is required then the complexity is higher. Unfortunately the
Kolmogorov complexity is usually extremely hard—and in
some cases provably impossible—to calculate, and hence re-
searchers have spent considerable effort to find measures that
are more tractable.

81. “How to define complexity in physics, and why,” C. H. Bennett,
in W. H. Zurek (editor), “Complexity, Entropy, and the Physics of
Information,” pp. 443–454 (Addison-Wesley, Reading, MA, 1990).
A nontechnical description of the problem and why it is interesting
by one of the leading researchers in the field. (E)

82. Complexity: Hierarchical Structure and Scaling in Physics,
R. Badii and A. Politi (Cambridge University Press, Cambridge,
1997). Chapters 8 and 9 of this book provide a useful introduction
to measures of complexity, and provide a connection to the topic of
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the next section of this review, computational complexity theory. (A)

G. Computational complexity

Somewhat peripheral to the main thrusts of current com-
plex systems research, but nonetheless of significant practical
value, is the study ofcomputational complexity. Computa-
tional complexity theory deals with the difficulty of perform-
ing certain tasks, such as calculating a particular number or
solving a quantitative problem. Although typically discussed
in the language of algorithms and computer science, compu-
tational complexity in fact has much wider applications, in
evolutionary biology, molecular biology, statistical physics,
game theory, engineering, and other areas. For instance, one
might ask how difficult is it, in terms of time taken or number
of arithmetic computations performed, to the find the ground
state of a physical system, meaning the state with the lowest
energy. For some systems this is an easy task but for others
it is difficult because there are many possible states and no
general principle for determining which energies are lowest.
Indeed it is possible to prove, subject to basic assumptions,
that in some cases there exists no general technique that will
find the ground state quickly, and the only reliable approach
is to search exhaustively through every state in turn, of which
there may be a huge number. But if this is true for computa-
tions performed by hand or on a computer, it is no less true
of nature itself. When nature finds the lowest energy state
of a system it is, in effect, performing a computation, and if
you can prove that no method exists for doing that computa-
tion quickly then this tells you that the physical system will
not reach its ground state quickly, or in some cases at all, if
the number of states that need to be searched through is so
vast that the search would take years or centuries. Thus re-
sults about the theory of computation turn out to give us very
real insight into how physical (or social or biological) systems
must behave.

The best known issue in computational complexity theory,
one that has made it to the pages of the newspapers on occa-
sion, is the question of whether two fundamental classes of
problems known as P and NP are in fact identical. The class P
is the class of problems that can be solved rapidly, according
to a certain definition of “rapidly.” An example is the problem
of multiplying two matrices, for which there is a simple well-
known procedure that will give you the answer in short order.
The class NP, on the other hand, is the class of problems such
that if I hand you the solution you cancheck that it’s correct
rapidly, which is not the same thing at all. Obviously NP in-
cludes all problems in P—if you tell me a purported solution
for the product of two matrices I can check it rapidly just by
calculating the product myself from scratch and making sure
I agree with your answer. But NP can also include problems
whose answer is easy to check but difficult to compute. A
classic example is the “traveling salesman problem,” which
asks whether there exists a route that will take a salesman to
each ofn cities while traveling no more than a set number of
miles. (It is assumed, for simplicity, that the salesman canfly

in a straight line from each city on his route to the next—he is
not obliged to follow the path of the established roads.) If you
hand me a purported solution to such a problem I can check
it quickly. Does the route visit every city? Is it below the
given number of miles? If the answer is yes to both questions
then the solution is good. But if you give me only the list of
cities and I have to find a solution for myself then the prob-
lem is much harder and indeed it widely is believed (though
not known for certain) that no method exists that will find the
solution rapidly in all cases. Unless this belief is wrong and
there exists a (currently unknown) way to solve such problems
easily so that problems in the NP class also belong to P, then
NP is a bigger class than P and hence the two classes are not
identical. Most researchers in computational complexity the-
ory believe this to be the case, but no one has yet been able to
prove it, nor indeed has any clue about how one should even
begin.

83. “NP-complete problems in physical reality,” S. Aaronson,
ACM SIGACT News36(1), 30–52 (2005). In this article Aaronson
discusses the application of computational complexity theory, and
particularly the central idea of “NP-completeness,” to a wide range
of scientific problems including protein folding, quantum comput-
ing, and relativity, introducing in the process many of the main ideas
of computational complexity. (I)

84. The Nature of Computation, C. Moore and S. Mertens (Ox-
ford University Press, Oxford, 2011). A readable and informative
introduction to the theory of computational complexity and its appli-
cations from two leading complex systems researchers. This book
emphasizes the important idea that it is not only computers that per-
form computation: all sorts of systems in the natural and man-made
world are effectively performing computations as part of their normal
functioning, and so can be viewed through the lens of computational
theories. (I)

85. Introduction to the Theory of Computation , M. Sipser
(Thomson, Boston, MA, 2006), 2nd edition. A general and widely
used text on computational complexity within computer science. (A)

H. Agent-based modeling

Many types of computer modeling are used to study com-
plex systems. Most of the standard methods of numerical
analysis—finite-element methods, linear algebra and spectral
methods, Monte Carlo methods, and so forth—have been ap-
plied in one branch of the field or another. However, there is
one method that is particular to the study of complex systems
and has largely been developed by complex systems scientists,
and that isagent-based modeling. The goal of agent-based
computer models, sometimes also called “individual-based,”
is to separately and individually simulate the agents in a com-
plex system and their interactions, allowing the emergent be-
haviors of the system to appear naturally, rather than putting
them in by hand. The first two papers listed here both give
pedagogical introductions to agent-based methods, but from
quite different viewpoints. The third reference is an entire
journal volume devoted to discussions of agent-based model-
ing, including a number of accessible overview articles.
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86. “Agent based models,” S. E. Page, in L. Blume and S. Durlauf
(editors),The New Palgrave Encyclopedia of Economics,(Pal-
grave Macmillan, Basingstoke, 2008), 2nd edition. (E)

87. “From factors to actors: Computational sociology and agent-
based modeling,” M. W. Macy and R. Willer, Annual Review of So-
ciology28, 143–166 (2002). (E)

88. Adaptive agents, intelligence, and emergent human orga-
nization: Capturing complexity through agent-based modeling,
B. J. L. Berry, L. D. Kiel, and E. Elliott (editors), volume 99, Suppl.
3, Proc. Natl. Acad. Sci. USA(2002). (E)

The book by Miller and Page, Ref. 4, also contains a useful
introduction to agent-based methods. There also exist a num-
ber of books that tackle the subject in the context of specific
fields of scientific study, such as:

89. Individual-based Modeling and Ecology, V. Grimm and S. F.
Railsback (Princeton University Press, Princeton, NJ, 2005). An
introduction to agent-based modeling in ecology. (I)

90. Agent-Based Models, N. Gilbert (Sage Publications, London,
2007). A very short introduction to social science applications of
agent-based models. (I)

A few classic examples of agent-based models are also wor-
thy of mention:

91. “Dynamic models of segregation,” T. Schelling, J. Math. Soc.
1, 143–186 (1971). One of the first true agent-based models is the
model of racial segregation proposed by Thomas Schelling in 1971.
Schelling did not have access to a computer at the time he pro-
posed his model (or perhaps was not interested in using one), and
so simulated it by hand, using coins on a grid of squares. However,
many computer simulations of the model have subsequently been
performed. Schelling was awarded the Nobel Prize in Economics
for 2005, in part for this work, and to date this is the only Nobel
Prize awarded for work on traditional complex systems (although
one could argue that, for instance, condensed matter systems are
complex systems, and several prizes in physics have been awarded
for condensed matter research). (E)

92. Growing Artificial Societies: Social Science from the Bot-
tom Up, J. M. Epstein and R. L. Axtell (MIT Press, Cambridge, MA,
1996). The “Sugarscape” models of Epstein and Axtell provide a
beautiful example of the emergence of complex behaviors from the
interactions of simple agents. This set of models would also be a
good starting point for experimenting with agent-based simulations:
the rules are simple and easy to implement, and the results lend
themselves nicely to computer graphics and visualization, making
the models relatively straightforward to interpret. Versions of some
of the models are available already programmed in standard agent-
based simulation software packages (see below). (I)

93. “Artificial economic life: a simple model of a stockmarket,”
R. G. Palmer, W. B. Arthur, J. H. Holland, B. LeBaron, and P. Tayler,
Physica D75, 264–274 (1994). A good example of an agent-based
model is the “artificial stock market” created by Palmeret al. at the
Santa Fe Institute in the early 1990s. In this study, the researchers
simulated individually the behavior of many traders in a stock mar-
ket, giving them a deliberately heterogeneous selection of trading
strategies and limited knowledge of market conditions. They ob-

served regimes of the model in which it displayed the equilibrium
behavior of neoclassical economics, but others in which it displayed
chaotic behavior more akin to that of real stock markets. (I)

94. “An approach to the synthesis of life,” T. S. Ray, in C. Langton,
C. Taylor, J. D. Farmer, and S. Rasmussen (editors), “Artificial Life
II,” volume XI, Santa Fe Institute Studies in the Sciences of Com-
plexity, pp. 371–408 (Addison-Wesley, Redwood City, CA, 1991).
An inventive and influential example of an agent-based simulation is
the Tierra evolution model created by Ray. In this simulation, com-
puter programs reproduce by explicitly copying themselves into new
memory locations, competing and mutating to make best use of com-
puter resources, meaning CPU time and memory. Although similar
in some respects to the genetic programming studies discussed in
Section IV.E, Tierra is different in that no fitness function is imposed
externally upon its programs. Instead, fitness emerges naturally in
the same way it does in biological evolution: those programs that
manage to reproduce themselves survive and spread, while those that
do not die out. Tierra was the first such simulation to be constructed,
but others, such as the Avida system, have appeared in recent years.
Systems such as these are referred to generally as “artificial life”
simulations. Artificial life was a major thrust in complex systems
research in the 1990s. (I)

Finally, there are a variety of software packages available
for performing agent-based simulations. Some of them are
highly advanced programming libraries suitable for cutting-
edge research, while others are designed as easy-to-use ed-
ucational tools requiring little prior knowledge. Among the
former,RepastandMasonare currently the most widely used
and mature systems, while among the latterNetLogois a good
starting point.

V. CONCLUSION

Complex systems is a broad field, encompassing a wide
range of methods, many of them drawn from physics, and hav-
ing an equally wide range of applications, within physics and
in many other areas. The resources reviewed here cover only a
fraction of this rich and active field of scientific endeavor.For
the interested reader there is an abundance of further resources
to be explored when those in this article are exhausted, and for
the scientist intrigued by the questions raised there are ample
opportunities to contribute. Science has only just begun to
tackle the questions raised by the study of complex systems
and the areas of our ignorance far outnumber the areas of our
expertise. For the scientist looking for profound and impor-
tant questions to work on, complex systems offers a wealth of
possibilities.
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