
COMPUTATIONAL PHYSICS

EXERCISES FOR CHAPTER 6

Exercise 6.1: A circuit of resistors

Consider the following circuit of resistors:

V1

V4

0 Volts

3

2V

V

V+

All the resistors have the same resistance R. The power rail at the top is at voltage V+ = 5 V.

What are the other four voltages, V1 to V4?

To answer this question we use Ohm’s law and the Kirchhoff current law, which says that

the total net current flow out of (or into) any junction in a circuit must be zero. Thus for the

junction at voltage V1, for instance, we have

V1 −V2

R
+

V1 −V3

R
+

V1 −V4

R
+

V1 −V+

R
= 0,

or equivalently

4V1 −V2 −V3 −V4 = V+.

a) Write similar equations for the other three junctions with unknown voltages.

b) Write a program to solve the four resulting equations using Gaussian elimination and

hence find the four voltages (or you can modify a program you already have, such as the

program gausselim.py in Example 6.1).

1

Exercise 6.2:

a) Modify the program gausselim.py in Example 6.1 to incorporate partial pivoting (or you

can write your own program from scratch if you prefer). Run your program and demon-

strate that it gives the same answers as the original program when applied to Eq. (6.1)

b) Modify the program to solve the equations in (6.17) and show that it can find the solution

to these as well, even though Gaussian elimination without pivoting fails.

Exercise 6.3: LU decomposition

This exercise invites you to write your own program to solve simultaneous equations using the

method of LU decomposition.

a) Starting, if you wish, with the program for Gaussian elimination in Example 6.1 on

page 218, write a Python function that calculates the LU decomposition of a matrix. The

calculation is same as that for Gaussian elimination, except that at each step of the cal-

culation you need to extract the appropriate elements of the matrix and assemble them

to form the lower diagonal matrix L of Eq. (6.32). Test your function by calculating the

LU decomposition of the matrix from Eq. (6.2), then multiplying the L and U you get and

verifying that you recover the original matrix once more.

b) Build on your LU decomposition function to create a complete program to solve Eq. (6.2)

by performing a double backsubstitution as described in this section. Solve the same

equations using the function solve from the numpy package and verify that you get the

same answer either way.

c) If you’re feeling ambitious, try your hand at LU decomposition with partial pivoting. Par-

tial pivoting works in the same way for LU decomposition as it does for Gaussian elim-

ination, swapping rows to get the largest diagonal element as explained in Section 6.1.3,

but the extension to LU decomposition requires two additional steps. First, every time

you swap two rows you also have to swap the same rows in the matrix L. Second, when

you use your LU decomposition to solve a set of equations Ax = v you will also need

to perform the same sequence of swaps on the vector v on the right-hand side. This

means you need to record the swaps as you are doing the decomposition so that you can

recreate them later. The simplest way to do this is to set up a list or array in which the

value of the ith element records the row you swapped with on the ith step of the pro-

cess. For instance, if you swapped the first row with the second then the second with the

fourth, the first two elements of the list would be 2 and 4. Solving a set of equations for

given v involves first performing the required sequence of swaps on the elements of v

then performing a double backsubstitution as usual. (In ordinary Gaussian elimination

with pivoting, one swaps the elements of v as the algorithm proceeds, rather than all at

once, but the difference has no effect on the results, so it’s fine to perform all the swaps at

once if we wish.)

Modify the function you wrote for part (a) to perform LU decomposition with partial

pivoting. The function should return the matrices L and U for the LU decomposition of

the swapped matrix, plus a list of the swaps made. Then modify the rest of your program

2

to solve equations of the form Ax = v using LU decomposition with pivoting. Test

your program on the example from Eq. (6.17), which cannot be solved without pivoting

because of the zero in the first element of the matrix. Check your results against a solution

of the same equations using the solve function from numpy.

LU decomposition with partial pivoting is the most widely used method for the solution of

simultaneous equations in practice. Precisely this method is used in the function solve from

the numpy package. There’s nothing wrong with using the solve function—it’s well written,

fast, and convenient. But it does nothing you haven’t already done yourself if you’ve solved

this exercise.

Exercise 6.4: Write a program to solve the resistor network problem of Exercise 6.1 on page 220

using the function solve from numpy.linalg. If you also did Exercise 6.1, you should check

that you get the same answer both times.

Exercise 6.5: Here’s a more complicated circuit problem:

R1 R2 R3

R4 R5 R6

1C C2

1 2 3

V+

0 Volts

The voltage V+ is time-varying and sinusoidal of the form V+ = x+eiωt with x+ a constant.

The resistors in the circuit can be treated using Ohm’s law as usual. For the capacitors the

charge Q and voltage V across them are related by the capacitor law Q = CV, where C is the

capacitance. Differentiating both sides of this expression gives the current I flowing in on one

side of the capacitor and out on the other:

I =
dQ

dt
= C

dV

dt
.

a) Assuming the voltages at the points labeled 1, 2, and 3 are of the form V1 = x1eiωt,

V2 = x2eiωt, and V3 = x3eiωt, apply Kirchhoff’s law at each of the three points, along

with Ohm’s law and the capacitor law, to show that the constants x1, x2, and x3 satisfy

the equations
(

1

R1
+

1

R4
+ iωC1

)

x1 − iωC1x2 =
x+

R1
,

−iωC1x1 +

(

1

R2
+

1

R5
+ iωC1 + iωC2

)

x2 − iωC2x3 =
x+

R2
,

−iωC2x2 +

(

1

R3
+

1

R6
+ iωC2

)

x3 =
x+

R3
.

3

b) Write a program to solve for x1, x2, and x3 when

R1 = R3 = R5 = 1 kΩ,

R2 = R4 = R6 = 2 kΩ,

C1 = 1 µF, C2 = 0.5 µF,

x+ = 3 V, ω = 1000 s−1.

Notice that the matrix for this problem has complex elements. You will need to define a

complex array to hold it, but you can still use the solve function just as before to solve

the equations—it works with either real or complex arguments. Using your solution have

your program calculate and print the amplitudes of the three voltages V1, V2, and V3

and their phases in degrees. (Hint: You may find the functions polar or phase in the

cmath package useful. If z is a complex number then “r,theta = polar(z)” will return

the modulus and phase (in radians) of z and “theta = phase(z)” will return the phase

alone.)

Exercise 6.6: Starting with either the program springs.py on page 237 or springsb.py on

page 238, remove the code that makes a graph of the results and replace it with code that

creates an animation of the masses as they vibrate back and forth, their displacements relative

to their resting positions being given by the real part of Eq. (6.53). For clarity, assume that the

resting positions are two units apart in a horizontal line. At a minimum your animation should

show each of the individual masses, perhaps as small spheres. (Spheres of radius about 0.2 or

0.3 seem to work well.)

Exercise 6.7: A chain of resistors

Consider a long chain of resistors wired up like this:

V+

V1

VN

VN − 1

V

V3

2 VN − 2

0 Volts

All the resistors have the same resistance R. The power rail at the top is at voltage V+ = 5V.

The problem is to find the voltages V1 . . .VN at the internal points in the circuit.

4

a) Using Ohm’s law and the Kirchhoff current law, which says that the total net current flow

out of (or into) any junction in a circuit must be zero, show that the voltages V1 . . .VN

satisfy the equations

3V1 −V2 −V3 = V+,

−V1 + 4V2 −V3 −V4 = V+,

...

−Vi−2 −Vi−1 + 4Vi −Vi+1 −Vi+2 = 0,

...

−VN−3 −VN−2 + 4VN−1 −VN = 0,

−VN−2 −VN−1 + 3VN = 0.

Express these equations in vector form Av = w and find the values of the matrix A and

the vector w.

b) Write a program to solve for the values of the Vi when there are N = 6 internal junctions

with unknown voltages. (Hint: All the values of Vi should lie between zero and 5V. If

they don’t, something is wrong.)

c) Now repeat your calculation for the case where there are N = 10 000 internal junctions.

This part is not possible using standard tools like the solve function. You need to make

use of the fact that the matrix A is banded and use the banded function from the file

banded.py, discussed in Appendix E.

Exercise 6.8: The QR algorithm

In this exercise you’ll write a program to calculate the eigenvalues and eigenvectors of a real

symmetric matrix using the QR algorithm. The first challenge is to write a program that finds

the QR decomposition of a matrix. Then we’ll use that decomposition to find the eigenvalues.

As described above, the QR decomposition expresses a real square matrix A in the form

A = QR, where Q is an orthogonal matrix and R is an upper-triangular matrix. Given an

N × N matrix A we can compute the QR decomposition as follows.

Let us think of the matrix as a set of N column vectors a0 . . . aN−1 thus:

A =

| | | · · ·
a0 a1 a2 · · ·
| | | · · ·

 ,

where we have numbered the vectors in Python fashion, starting from zero, which will be

convenient when writing the program. We now define two new sets of vectors u0 . . . uN−1 and

q0 . . . qN−1 as follows:

u0 = a0, q0 =
u0

|u0|
,

u1 = a1 − (q0 · a1)q0, q1 =
u1

|u1|
,

u2 = a2 − (q0 · a2)q0 − (q1 · a2)q1, q2 =
u2

|u2|
,

5

and so forth. The general formulas for calculating ui and qi are

ui = ai −
i−1

∑
j=0

(qj · ai)qj, qi =
ui

|ui|
.

a) Show, by induction or otherwise, that the vectors qi are orthonormal, i.e., that they satisfy

qi · qj =

{

1 if i = j,

0 if i 6= j.

Now, rearranging the definitions of the vectors, we have

a0 = |u0| q0,

a1 = |u1| q1 + (q0 · a1)q0,

a2 = |u2| q2 + (q0 · a2)q0 + (q1 · a2)q1,

and so on. Or we can group the vectors qi together as the columns of a matrix and write all of

these equations as a single matrix equation

A =

| | | · · ·
a0 a1 a2 · · ·
| | | · · ·

 =

| | | · · ·
q0 q1 q2 · · ·
| | | · · ·

|u0| q0 · a1 q0 · a2 · · ·
0 |u1| q1 · a2 · · ·
0 0 |u2| · · ·

 .

(If this looks complicated it’s worth multiplying out the matrices on the right to verify for

yourself that you get the correct expressions for the ai.)

Notice now that the first matrix on the right-hand side of this equation, the matrix with

columns qi, is orthogonal, because the vectors qi are orthonormal, and the second matrix is

upper triangular. In other words, we have found the QR decomposition A = QR. The matrices

Q and R are

Q =

| | | · · ·
q0 q1 q2 · · ·
| | | · · ·

 , R =

|u0| q0 · a1 q0 · a2 · · ·
0 |u1| q1 · a2 · · ·
0 0 |u2| · · ·

 .

b) Write a Python function that takes as its argument a real square matrix A and returns

the two matrices Q and R that form its QR decomposition. As a test case, try out your

function on the matrix

A =

1 4 8 4

4 2 3 7

8 3 6 9

4 7 9 2

.

Check the results by multiplying Q and R together to recover the original matrix A again.

c) Using your function, write a complete program to calculate the eigenvalues and eigen-

vectors of a real symmetric matrix using the QR algorithm. Continue the calculation until

the magnitude of every off-diagonal element of the matrix is smaller than 10−6. Test your

program on the example matrix above. You should find that the eigenvalues are 1, 21,

−3, and −8.

6

Exercise 6.9: Asymmetric quantum well

Quantum mechanics can be formulated as a matrix problem and solved on a computer us-

ing linear algebra methods. Suppose, for example, we have a particle of mass M in a one-

dimensional quantum well of width L, but not a square well like the examples you’ve probably

seen before. Suppose instead that the potential V(x) varies somehow inside the well:

x = 0 x = L

V(x)

We cannot solve such problems analytically in general, but we can solve them on the computer.

In a pure state of energy E, the spatial part of the wavefunction obeys the time-independent

Schrödinger equation Ĥψ(x) = Eψ(x), where the Hamiltonian operator Ĥ is given by

Ĥ = −
h̄2

2M

d2

dx2
+V(x).

For simplicity, let’s assume that the walls of the well are infinitely high, so that the wavefunc-

tion is zero outside the well, which means it must go to zero at x = 0 and x = L. In that case,

the wavefunction can be expressed as a Fourier sine series thus:

ψ(x) =
∞

∑
n=1

ψn sin
πnx

L
,

where ψ1, ψ2, . . . are the Fourier coefficients.

a) Noting that, for m, n positive integers

∫ L

0
sin

πmx

L
sin

πnx

L
dx =

{

L/2 if m = n,

0 otherwise,

show that the Schrödinger equation Ĥψ = Eψ implies that

∞

∑
n=1

ψn

∫ L

0
sin

πmx

L
Ĥ sin

πnx

L
dx = 1

2LEψm.

7

Hence, defining a matrix H with elements

Hmn =
2

L

∫ L

0
sin

πmx

L
Ĥ sin

πnx

L
dx

=
2

L

∫ L

0
sin

πmx

L

[

−
h̄2

2M

d2

dx2
+V(x)

]

sin
πnx

L
dx,

show that Schrödinger’s equation can be written in matrix form as Hψ = Eψ, where ψ is

the vector (ψ1, ψ2, . . .). Thus ψ is an eigenvector of the Hamiltonian matrix H with eigen-

value E. If we can calculate the eigenvalues of this matrix, then we know the allowed

energies of the particle in the well.

b) For the case V(x) = ax/L, evaluate the integral in Hmn analytically and so find a general

expression for the matrix element Hmn. Show that the matrix is real and symmetric. You’ll

probably find it useful to know that

∫ L

0
x sin

πmx

L
sin

πnx

L
dx =

0 if m 6= n and both even or both odd,

−

(

2L

π

)2
mn

(m2 − n2)2
if m 6= n and one is even, one is odd,

L2/4 if m = n.

Write a Python program to evaluate your expression for Hmn for arbitrary m and n when

the particle in the well is an electron, the well has width 5 Å, and a = 10 eV. (The mass

and charge of an electron are 9.1094 × 10−31 kg and 1.6022 × 10−19 C respectively.)

c) The matrix H is in theory infinitely large, so we cannot calculate all its eigenvalues. But

we can get a pretty accurate solution for the first few of them by cutting off the matrix

after the first few elements. Modify the program you wrote for part (b) above to create

a 10 × 10 array of the elements of H up to m, n = 10. Calculate the eigenvalues of this

matrix using the appropriate function from numpy.linalg and hence print out, in units

of electron volts, the first ten energy levels of the quantum well, within this approxima-

tion. You should find, for example, that the ground-state energy of the system is around

5.84 eV. (Hint: Bear in mind that matrix indices in Python start at zero, while the indices

in standard algebraic expressions, like those above, start at one. You will need to make

allowances for this in your program.)

d) Modify your program to use a 100 × 100 array instead and again calculate the first ten

energy eigenvalues. Comparing with the values you calculated in part (c), what do you

conclude about the accuracy of the calculation?

e) Now modify your program once more to calculate the wavefunction ψ(x) for the ground

state and the first two excited states of the well. Use your results to make a graph with

three curves showing the probability density |ψ(x)|2 as a function of x in each of these

three states. Pay special attention to the normalization of the wavefunction—it should

satisfy the condition
∫ L

0 |ψ(x)|2 dx = 1. Is this true of your wavefunction?

Exercise 6.10: Consider the equation x = 1 − e−cx, where c is a known parameter and x is

unknown. This equation arises in a variety of situations, including the physics of contact pro-

cesses, mathematical models of epidemics, and the theory of random graphs.

8

a) Write a program to solve this equation for x using the relaxation method for the case

c = 2. Calculate your solution to an accuracy of at least 10−6.

b) Modify your program to calculate the solution for values of c from 0 to 3 in steps of 0.01

and make a plot of x as a function of c. You should see a clear transition from a regime

in which x = 0 to a regime of nonzero x. This is another example of a phase transition.

In physics this transition is known as the percolation transition; in epidemiology it is the

epidemic threshold.

Exercise 6.11: Overrelaxation

If you did not already do Exercise 6.10, you should do it before this one.

The ordinary relaxation method involves iterating the equation x′ = f (x), starting from

an initial guess, until it converges. As we have seen, this is often a fast and easy way to find

solutions to nonlinear equations. However, it is possible in some cases to make the method

work even faster using the technique of overrelaxation. Suppose our initial guess at the solution

of a particular equation is, say, x = 1, and the final, true solution is x = 5. After the first step of

the iterative process, we might then see a value of, say, x = 3. In the overrelaxation method, we

observe this value and note that x is increasing, then we deliberately overshoot the calculated

value, in the hope that this will get us closer to the final solution—in this case we might pass

over x = 3 and go straight to a value of x = 4 perhaps, which is closer to the final solution of

x = 5 and hence should get us to that solution quicker. The overrelaxation method provides a

formula for performing this kind of overshooting in a controlled fashion and often, though not

always, it does get us to our solution faster. In detail, it works as follows.

We can rewrite the equation x′ = f (x) in the form x′ = x + ∆x, where

∆x = x′ − x = f (x)− x.

The overrelaxation method involves iteration of the modified equation

x′ = x + (1 + ω) ∆x,

(keeping the definition of ∆x the same). If the parameter ω is zero, then this is the same as the

ordinary relaxation method, but for ω > 0 the method takes the amount ∆x by which the value

of x would have been changed and changes by a little more. Using ∆x = f (x)− x, we can also

write x′ as

x′ = x + (1 + ω)
[

f (x) − x
]

= (1 + ω) f (x) − ωx,

which is the form in which it is usually written.

For the method to work the value of ω must be chosen correctly, although there is some

wiggle room—there is an optimal value, but other values close to it will typically also give

good results. Unfortunately, there is no general theory that tells us what the optimal value is.

Usually it is found by trial and error.

a) Derive an equivalent of Eq. (6.81) for the overrelaxation method and hence show that the

error on x′, the equivalent of Eq. (6.83), is given by

ǫ′ ≃
x− x′

1 − 1/[(1 + ω) f ′(x) − ω]
.

9

b) Consider again the equation x = 1 − e−cx that we solved in Exercise 6.10. Take the pro-

gram you wrote for part (a) of that exercise, which solved the equation for the case c = 2,

and modify it to print out the number of iterations it takes to converge to a solution ac-

curate to 10−6.

c) Now write a new program (or modify the previous one) to solve the same equation x =
1 − e−cx for c = 2, again to an accuracy of 10−6, but this time using overrelaxation. Have

your program print out the answers it finds along with the number of iterations it took to

find them. Experiment with different values of ω to see how fast you can get the method

to converge. A value of ω = 0.5 is a reasonable starting point. With some trial and error

you should be able to get the calculation to converge about twice as fast as the simple

relaxation method, i.e., in about half as many iterations.

d) Are there any circumstances under which using a value ω < 0 would help us find a

solution faster than we can with the ordinary relaxation method? (Hint: The answer is

yes, but why?)

Exercise 6.12: The biochemical process of glycolysis, the breakdown of glucose in the body to

release energy, can be modeled by the equations

dx

dt
= −x + ay + x2y,

dy

dt
= b− ay− x2y.

Here x and y represent concentrations of two chemicals, ADP and F6P, and a and b are posi-

tive constants. One of the important features of nonlinear linear equations like these is their

stationary points, meaning values of x and y at which the derivatives of both variables become

zero simultaneously, so that the variables stop changing and become constant in time. Setting

the derivatives to zero above, the stationary points of our glycolysis equations are solutions of

−x + ay + x2y = 0, b− ay− x2y = 0.

a) Demonstrate analytically that the solution of these equations is

x = b, y =
b

a + b2
.

b) Show that the equations can be rearranged to read

x = y(a + x2), y =
b

a + x2

and write a program to solve these for the stationary point using the relaxation method

with a = 1 and b = 2. You should find that the method fails to converge to a solution in

this case.

c) Find a different way to rearrange the equations such that when you apply the relaxation

method again it now converges to a fixed point and gives a solution. Verify that the

solution you get agrees with part (a).

10

Exercise 6.13: Wien’s displacement constant

Planck’s radiation law tells us that the intensity of radiation per unit area and per unit wave-

length λ from a black body at temperature T is

I(λ) =
2πhc2λ−5

ehc/λkBT − 1
,

where h is Planck’s constant, c is the speed of light, and kB is Boltzmann’s constant.

a) Show by differentiating that the wavelength λ at which the emitted radiation is strongest

is the solution of the equation

5e−hc/λkBT +
hc

λkBT
− 5 = 0.

Make the substitution x = hc/λkBT and hence show that the wavelength of maximum

radiation obeys the Wien displacement law:

λ =
b

T
,

where the so-called Wien displacement constant is b = hc/kBx, and x is the solution to the

nonlinear equation

5e−x + x− 5 = 0.

b) Write a program to solve this equation to an accuracy of ǫ = 10−6 using the binary search

method, and hence find a value for the displacement constant.

c) The displacement law is the basis for the method of optical pyrometry, a method for mea-

suring the temperatures of objects by observing the color of the thermal radiation they

emit. The method is commonly used to estimate the surface temperatures of astronom-

ical bodies, such as the Sun. The wavelength peak in the Sun’s emitted radiation falls

at λ = 502 nm. From the equations above and your value of the displacement constant,

estimate the surface temperature of the Sun.

Exercise 6.14: Consider a square potential well of width w, with walls of height V:

V

0

E

w

11

Using Schrödinger’s equation, it can be shown that the allowed energies E of a single quantum

particle of mass m trapped in the well are solutions of

tan

√

w2mE/2h̄2 =

{

√

(V − E)/E for the even numbered states,

−
√

E/(V − E) for the odd numbered states,

where the states are numbered starting from 0, with the ground state being state 0, the first

excited state being state 1, and so forth.

a) For an electron (mass 9.1094 × 10−31 kg) in a well with V = 20 eV and w = 1 nm, write a

Python program to plot the three quantities

y1 = tan

√

w2mE/2h̄2, y2 =

√

V − E

E
, y3 = −

√

E

V − E
,

on the same graph, as a function of E from E = 0 to E = 20 eV. From your plot make

approximate estimates of the energies of the first six energy levels of the particle.

b) Write a second program to calculate the values of the first six energy levels in electron

volts to an accuracy of 0.001 eV using binary search.

Exercise 6.15: The roots of a polynomial

Consider the sixth-order polynomial

P(x) = 924x6 − 2772x5 + 3150x4 − 1680x3 + 420x2 − 42x + 1.

There is no general formula for the roots of a sixth-order polynomial, but one can find them

easily enough using a computer.

a) Make a plot of P(x) from x = 0 to x = 1 and by inspecting it find rough values for the six

roots of the polynomial—the points at which the function is zero.

b) Write a Python program to solve for the positions of all six roots to at least ten decimal

places of accuracy, using Newton’s method.

Note that the polynomial in this example is just the sixth Legendre polynomial (mapped onto

the interval from zero to one), so the calculation performed here is the same as finding the

integration points for 6-point Gaussian quadrature (see Section 5.6.2), and indeed Newton’s

method is the method of choice for calculating Gaussian quadrature points.

Exercise 6.16: The Lagrange point

There is a magical point between the Earth and the Moon, called the L1 Lagrange point, at

which a satellite will orbit the Earth in perfect synchrony with the Moon, staying always in

between the two. This works because the inward pull of the Earth and the outward pull of the

Moon combine to create exactly the needed centripetal force that keeps the satellite in its orbit.

Here’s the setup:

12

m

R

r

Satellite
Earth MoonM

a) Assuming circular orbits, and assuming that the Earth is much more massive than either

the Moon or the satellite, show that the distance r from the center of the Earth to the L1

point satisfies
GM

r2
−

Gm

(R− r)2
= ω2r,

where M and m are the Earth and Moon masses, G is Newton’s gravitational constant,

and ω is the angular velocity of both the Moon and the satellite.

b) The equation above is a fifth-order polynomial equation in r (also called a quintic equa-

tion). Such equations cannot be solved exactly in closed form, but it’s straightforward to

solve them numerically. Write a program that uses either Newton’s method or the secant

method to solve for the distance r from the Earth to the L1 point. Compute a solution

accurate to at least four significant figures.

The values of the various parameters are:

G = 6.674 × 10−11 m3kg−1s−2,

M = 5.974 × 1024 kg,

m = 7.348 × 1022 kg,

R = 3.844 × 108 m,

ω = 2.662 × 10−6 s−1.

You will also need to choose a suitable starting value for r, or two starting values if you

use the secant method.

Exercise 6.17: Nonlinear circuits

Exercise 6.1 used regular simultaneous equations to solve for the behavior of circuits of resis-

tors. Resistors are linear—current is proportional to voltage—and the resulting equations we

need to solve are therefore also linear and can be solved by standard matrix methods. Real cir-

cuits, however, often include nonlinear components. To solve for the behavior of these circuits

we need to solve nonlinear equations.

13

Consider the following simple circuit, a variation on the classic Wheatstone bridge:

R1

R2 R4

R3

V1

V

0

+

V2

The resistors obey the normal Ohm law, but the diode obeys the diode equation:

I = I0(eV/VT − 1),

where V is the voltage across the diode and I0 and VT are constants.

a) The Kirchhoff current law says that the total net current flowing into or out of every point

in a circuit must be zero. Applying the law to voltage V1 in the circuit above we get

V1 −V+

R1
+

V1

R2
+ I0

[

e(V1−V2)/VT − 1
]

= 0.

Derive the corresponding equation for voltage V2.

b) Solve the two nonlinear equations for the voltages V1 and V2 with the conditions

V+ = 5 V,

R1 = 1 kΩ, R2 = 4 kΩ, R3 = 3 kΩ, R4 = 2 kΩ,

I0 = 3 nA, VT = 0.05 V.

You can use either the relaxation method or Newton’s method to solve the equations. If

you use Newton’s method you can solve Eq. (6.108) for ∆x using the function solve()

from numpy.linalg if you want to, but in this case the matrix is only a 2× 2 matrix, so it’s

easy to calculate the inverse directly too.

c) The electronic engineer’s rule of thumb for diodes is that the voltage across a (forward

biased) diode is always about 0.6 volts. Confirm that your results agree with this rule.

Exercise 6.18: The temperature of a light bulb

An incandescent light bulb is a simple device—it contains a filament, usually made of tungsten,

heated by the flow of electricity until it becomes hot enough to radiate thermally. Essentially

all of the power consumed by such a bulb is radiated as electromagnetic energy, but some of

the radiation is not in the visible wavelengths, which means it is useless for lighting purposes.

Let us define the efficiency of a light bulb to be the fraction of the radiated energy that falls

in the visible band. It’s a good approximation to assume that the radiation from a filament

14

at temperature T obeys the Planck radiation law, meaning that the power radiated per unit

wavelength λ obeys

I(λ) = 2πAhc2 λ−5

ehc/λkBT − 1
,

where A is the surface area of the filament, h is Planck’s constant, c is the speed of light, and

kB is Boltzmann’s constant. The visible wavelengths run from λ1 = 390 nm to λ2 = 750 nm,

so the total energy radiated in the visible window is
∫ λ2

λ1
I(λ) dλ and the total energy at all

wavelengths is
∫ ∞

0 I(λ) dλ. Dividing one expression by the other and substituting for I(λ)
from above, we get an expression for the efficiency η of the light bulb thus:

η =

∫ λ2

λ1
λ−5/(ehc/λkBT − 1) dλ

∫ ∞

0 λ−5/(ehc/λkBT − 1) dλ
,

where the leading constants and the area A have canceled out. Making the substitution x =
hc/λkBT, this can also be written as

η =

∫ hc/λ1kBT
hc/λ2kBT

x3/(ex − 1) dx
∫ ∞

0 x3/(ex − 1) dx
=

15

π4

∫ hc/λ1kBT

hc/λ2kBT

x3

ex − 1
dx,

where we have made use of the known exact value of the integral in the denominator.

a) Write a Python function that takes a temperature T as its argument and calculates the

value of η for that temperature from the formula above. The integral in the formula can-

not be done analytically, but you can do it numerically using any method of your choice.

(For instance, Gaussian quadrature with 100 sample points works fine.) Use your func-

tion to make a graph of η as a function of temperature between 300 K and 10 000 K. You

should see that there is an intermediate temperature where the efficiency is a maximum.

b) Calculate the temperature of maximum efficiency of the light bulb to within 1 K using

golden ratio search. (Hint: An accuracy of 1 K is the equivalent of a few parts in ten

thousand in this case. To get this kind of accuracy in your calculation you’ll need to use

values for the fundamental constants that are suitably accurate, i.e., you will need values

accurate to several significant figures.)

c) Is it practical to run a tungsten-filament light bulb at the temperature you found? If not,

why not?

15

