
COMPUTATIONAL PHYSICS

EXERCISES FOR CHAPTER 5

Exercise 5.1: In the on-line resources you will find a file called velocities.txt, which contains

two columns of numbers, the first representing time t in seconds and the second the x-velocity

in meters per second of a particle, measured once every second from time t = 0 to t = 100. The

first few lines look like this:

0 0

1 0.069478

2 0.137694

3 0.204332

4 0.269083

5 0.331656

Write a program to do the following:

a) Read in the data and, using the trapezoidal rule, calculate from them the approximate

distance traveled by the particle in the x direction as a function of time. See Section 2.4.3

on page 57 if you want a reminder of how to read data from a file.

b) Extend your program to make a graph that shows, on the same plot, both the original

velocity curve and the distance traveled as a function of time.

Exercise 5.2:

a) Write a program to calculate an approximate value for the integral
∫ 2

0 (x4 − 2x + 1) dx

from Example 5.1, but using Simpson’s rule with 10 slices instead of the trapezoidal rule.

You may wish to base your program on the trapezoidal rule program on page 142.

b) Run the program and compare your result to the known correct value of 4.4. What is the

fractional error on your calculation?

c) Modify the program to use a hundred slices instead, then a thousand. Note the improve-

ment in the result. How do the results compare with those from Example 5.1 for the

trapezoidal rule with the same numbers of slices?

Exercise 5.3: Consider the integral

E(x) =
∫ x

0
e−t2

dt.

a) Write a program to calculate E(x) for values of x from 0 to 3 in steps of 0.1. Choose for

yourself what method you will use for performing the integral and a suitable number of

slices.
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b) When you are convinced your program is working, extend it further to make a graph of

E(x) as a function of x. If you want to remind yourself of how to make a graph, you

should consult Section 3.1, starting on page 88.

Note that there is no known way to perform this particular integral analytically, so numerical

approaches are the only way forward.

Exercise 5.4: The diffraction limit of a telescope

Our ability to resolve detail in astronomical observations is limited by the diffraction of light

in our telescopes. Light from stars can be treated effectively as coming from a point source

at infinity. When such light, with wavelength λ, passes through the circular aperture of a

telescope (which we’ll assume to have unit radius) and is focused by the telescope in the focal

plane, it produces not a single dot, but a circular diffraction pattern consisting of central spot

surrounded by a series of concentric rings. The intensity of the light in this diffraction pattern

is given by

I(r) =

(

J1(kr)

kr

)2

,

where r is the distance in the focal plane from the center of the diffraction pattern, k = 2π/λ,

and J1(x) is a Bessel function. The Bessel functions Jm(x) are given by

Jm(x) =
1

π

∫ π

0
cos(mθ − x sin θ) dθ,

where m is a nonnegative integer and x ≥ 0.

a) Write a Python function J(m,x) that calculates the value of Jm(x) using Simpson’s rule

with N = 1000 points. Use your function in a program to make a plot, on a single graph,

of the Bessel functions J0, J1, and J2 as a function of x from x = 0 to x = 20.

b) Make a second program that makes a density plot of the intensity of the circular diffrac-

tion pattern of a point light source with λ = 500 nm, in a square region of the focal plane,

using the formula given above. Your picture should cover values of r from zero up to

about 1 µm.

Hint 1: You may find it useful to know that limx→0 J1(x)/x = 1
2 . Hint 2: The central spot in the

diffraction pattern is so bright that it may be difficult to see the rings around it on the computer

screen. If you run into this problem a simple way to deal with it is to use one of the other color

schemes for density plots described in Section 3.3. The “hot” scheme works well. For a more

sophisticated solution to the problem, the imshow function has an additional argument vmax

that allows you to set the value that corresponds to the brightest point in the plot. For instance,

if you say “imshow(x,vmax=0.1)”, then elements in x with value 0.1, or any greater value, will

produce the brightest (most positive) color on the screen. By lowering the vmax value, you can

reduce the total range of values between the minimum and maximum brightness, and hence

increase the sensitivity of the plot, making subtle details visible. (There is also a vmin argument

that can be used to set the value that corresponds to the dimmest (most negative) color.) For

this exercise a value of vmax=0.01 appears to work well.
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Exercise 5.5: Error on Simpson’s rule

Following the same line of argument that led to Eq. (5.28), show that the error on an integral

evaluated using Simpson’s rule is given, to leading order in h, by Eq. (5.29).

Exercise 5.6: Write a program, or modify an earlier one, to once more calculate the value of

the integral
∫ 2

0 (x4 − 2x + 1) dx from Example (5.28), using the trapezoidal rule with 20 slices,

but this time have the program also print an estimate of the error on the result, calculated

using the method of Eq. (5.28). To do this you will need to evaluate the integral twice, once

with N1 = 10 slices and then again with N2 = 20 slices. Then Eq. (5.28) gives the error. How

does the error calculated in this manner compare with a direct computation of the error as the

difference between your value for the integral and the true value of 4.4? Why do the two not

agree perfectly?

Exercise 5.7: Consider the integral

I =
∫ 1

0
sin2

√
100x dx

a) Write a program that uses the adaptive trapezoidal rule method of Section 5.3 and Eq.

(5.34) to calculate the value of this integral to an approximate accuracy of ǫ = 10−6

(i.e., correct to six digits after the decimal point). Start with one single integration slice

and work up from there to two, four, eight, and so forth. Have your program print out

the number of slices, its estimate of the integral, and its estimate of the error on the inte-

gral, for each value of the number of slices N, until the target accuracy is reached. (Hint:

You should find the result is around I = 0.45.)

b) Now modify your program to evaluate the same integral using the Romberg integration

technique described in Section 5.4. Have your program print out a triangular table of

values, as on page 161, of all the Romberg estimates of the integral. Calculate the error

on your estimates using Eq. (5.49) and again continue the calculation until you reach an

accuracy of ǫ = 10−6. You should find that the Romberg method reaches the required

accuracy considerably faster than the trapezoidal rule alone.

Exercise 5.8: Write a program that uses the adaptive Simpson’s rule method of Section 5.3 and

Eqs. (5.35) to (5.39) to calculate the same integral as in Exercise 5.7, again to an approximate

accuracy of ǫ = 10−6. Starting this time with two integration slices, work up from there to four,

eight, and so forth, printing out the results at each step until the required accuracy is reached.

You should find you reach that accuracy for a significantly smaller number of slices than with

the trapezoidal rule calculation in part (a) of Exercise 5.7, but a somewhat larger number than

with the Romberg integration of part (b).

Exercise 5.9: Heat capacity of a solid

Debye’s theory of solids gives the heat capacity of a solid at temperature T to be

CV = 9VρkB

(

T

θD

)3 ∫ θD/T

0

x4ex

(ex − 1)2
dx,
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where V is the volume of the solid, ρ is the number density of atoms, kB is Boltzmann’s con-

stant, and θD is the so-called Debye temperature, a property of solids that depends on their

density and speed of sound.

a) Write a Python function cv(T) that calculates CV for a given value of the temperature,

for a sample consisting of 1000 cubic centimeters of solid aluminum, which has a number

density of ρ = 6.022 × 1028 m−3 and a Debye temperature of θD = 428 K. Use Gaussian

quadrature to evaluate the integral, with N = 50 sample points.

b) Use your function to make a graph of the heat capacity as a function of temperature from

T = 5 K to T = 500 K.

Exercise 5.10: Period of an anharmonic oscillator

The simple harmonic oscillator crops up in many places. Its behavior can be studied readily

using analytic methods and it has the important property that its period of oscillation is a

constant, independent of its amplitude, making it useful, for instance, for keeping time in

watches and clocks.

Frequently in physics, however, we also come across anharmonic oscillators, whose period

varies with amplitude and whose behavior cannot usually be calculated analytically. A general

classical oscillator can be thought of as a particle in a concave potential well. When disturbed,

the particle will rock back and forth in the well:

xV( )

x

The harmonic oscillator corresponds to a quadratic potential V(x) ∝ x2. Any other form gives

an anharmonic oscillator. (Thus there are many different kinds of anharmonic oscillator, de-

pending on the exact form of the potential.)

One way to calculate the motion of an oscillator is to write down the equation for the con-

servation of energy in the system. If the particle has mass m and position x, then the total

energy is equal to the sum of the kinetic and potential energies thus:

E = 1
2 m

(

dx

dt

)2

+ V(x).

Since the energy must be constant over time, this equation is effectively a (nonlinear) differen-

tial equation linking x and t.
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Let us assume that the potential V(x) is symmetric about x = 0 and let us set our anhar-

monic oscillator going with amplitude a. That is, at t = 0 we release it from rest at position

x = a and it swings back towards the origin. Then at t = 0 we have dx/dt = 0 and the

equation above reads E = V(a), which gives us the total energy of the particle in terms of the

amplitude.

a) When the particle reaches the origin for the first time, it has gone through one quarter of a

period of the oscillator. By rearranging the equation above for dx/dt and then integrating

with respect to t from 0 to 1
4 T, show that the period T is given by

T =
√

8m
∫ a

0

dx
√

V(a)− V(x)
.

b) Suppose the potential is V(x) = x4 and the mass of the particle is m = 1. Write a Python

function that calculates the period of the oscillator for given amplitude a using Gaussian

quadrature with N = 20 points, then use your function to make a graph of the period for

amplitudes ranging from a = 0 to a = 2.

c) You should find that the oscillator gets faster as the amplitude increases, even though the

particle has further to travel for larger amplitude. And you should find that the period

diverges as the amplitude goes to zero. How do you explain these results?

Exercise 5.11: Suppose a plane wave of wavelength λ, such as light or a sound wave, is blocked

by an object with a straight edge, represented by the solid line at the bottom of this figure:

z

x

The wave will be diffracted at the edge and the resulting intensity at the position (x, z) marked

by the dot is given by near-field diffraction theory to be

I =
I0

8

(

[

2C(u) + 1
]2

+
[

2S(u) + 1
]2
)

,

where I0 is the intensity of the wave before diffraction and

u = x

√

2

λz
, C(u) =

∫ u

0
cos 1

2 πt2 dt, S(u) =
∫ u

0
sin 1

2 πt2 dt.
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Write a program to calculate I/I0 and make a plot of it as a function of x in the range −5 m

to 5 m for the case of a sound wave with wavelength λ = 1 m, measured z = 3 m past the

straight edge. Calculate the integrals using Gaussian quadrature with N = 50 points. You

should find significant variation in the intensity of the diffracted sound—enough that you

could easily hear the effect if sound were diffracted, say, at the edge of a tall building.

Exercise 5.12: The Stefan–Boltzmann constant

The Planck theory of thermal radiation tells us that in the (angular) frequency interval ω to

ω + dω, a black body of unit area radiates electromagnetically an amount of thermal energy

per second equal to I(ω) dω, where

I(ω) =
h̄

4π2c2

ω3

(eh̄ω/kBT − 1)
.

Here h̄ is Planck’s constant over 2π, c is the speed of light, and kB is Boltzmann’s constant.

a) Show that the total energy per unit area radiated by a black body is

W =
k4

BT4

4π2c2h̄3

∫ ∞

0

x3

ex − 1
dx.

b) Write a program to evaluate the integral in this expression. Explain what method you

used, and how accurate you think your answer is.

c) Even before Planck gave his theory of thermal radiation around the turn of the 20th cen-

tury, it was known that the total energy W given off by a black body per unit area per

second followed Stefan’s law: W = σT4, where σ is the Stefan–Boltzmann constant. Use

your value for the integral above to compute a value for the Stefan–Boltzmann constant

(in SI units) to three significant figures. Check your result against the known value, which

you can find in books or on-line. You should get good agreement.

Exercise 5.13: Quantum uncertainty in the harmonic oscillator

In units where all the constants are 1, the wavefunction of the nth energy level of the one-

dimensional quantum harmonic oscillator—i.e., a spinless point particle in a quadratic poten-

tial well—is given by

ψn(x) =
1

√

2nn!
√

π
e−x2/2 Hn(x),

for n = 0 . . . ∞, where Hn(x) is the nth Hermite polynomial. Hermite polynomials satisfy a

relation somewhat similar to that for the Fibonacci numbers, although more complex:

Hn+1(x) = 2xHn(x)− 2nHn−1(x).

The first two Hermite polynomials are H0(x) = 1 and H1(x) = 2x.
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a) Write a user-defined function H(n,x) that calculates Hn(x) for given x and any integer

n ≥ 0. Use your function to make a plot that shows the harmonic oscillator wavefunc-

tions for n = 0, 1, 2, and 3, all on the same graph, in the range x = −4 to x = 4. Hint:

There is a function factorial in the math package that calculates the factorial of an inte-

ger.

b) Make a separate plot of the wavefunction for n = 30 from x = −10 to x = 10. Hint: If

your program takes too long to run in this case, then you’re doing the calculation wrong—

the program should take only a second or so to run.

c) The quantum uncertainty of a particle in the nth level of a quantum harmonic oscillator

can be quantified by its root-mean-square position
√

〈x2〉, where

〈x2〉 =
∫ ∞

−∞
x2|ψn(x)|2 dx.

Write a program that evaluates this integral using Gaussian quadrature on 100 points

and then calculates the uncertainty (i.e., the root-mean-square position of the particle) for

a given value of n. Use your program to calculate the uncertainty for n = 5. You should

get an answer in the vicinity of
√

〈x2〉 = 2.3.

Exercise 5.14: Gravitational pull of a uniform sheet

A uniform square sheet of metal is floating motionless in space:

z

y

x

1kg point mass

10m

The sheet is 10 m on a side and of negligible thickness, and it has a mass of 10 metric tonnes.

a) Consider the gravitational force due to the plate felt by a point mass of 1 kg a distance z

from the center of the square, in the direction perpendicular to the sheet, as shown above.

Show that the component of the force along the z-axis is

Fz = Gσz
∫∫ L/2

−L/2

dx dy

(x2 + y2 + z2)3/2
,

where G = 6.674 × 10−11 m3 kg−1 s−2 is Newton’s gravitational constant and σ is the

mass per unit area of the sheet.
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b) Write a program to calculate and plot the force as a function of z from z = 0 to z =
10 m. For the double integral use (double) Gaussian quadrature, as in Eq. (5.82), with 100

sample points along each axis.

c) You should see a smooth curve, except at very small values of z, where the force should

drop off suddenly to zero. This drop is not a real effect, but an artifact of the way we

have done the calculation. Explain briefly where this artifact comes from and suggest a

strategy to remove it, or at least to decrease its size.

This calculation can thought of as a model for the gravitational pull of a galaxy. Most of the

mass in a spiral galaxy (such as our own Milky Way) lies in a thin plane or disk passing through

the galactic center, and the gravitational pull exerted by that plane on bodies outside the galaxy

can be calculated by just the methods we have employed here.

Exercise 5.15: Create a user-defined function f(x) that returns the value 1 + 1
2 tanh 2x, then

use a central difference to calculate the derivative of the function in the range −2 ≤ x ≤ 2.

Calculate an analytic formula for the derivative and make a graph with your numerical result

and the analytic answer on the same plot. It may help to plot the exact answer as lines and the

numerical one as dots. (Hint: In Python the tanh function is found in the math package, and

it’s called simply tanh.)

Exercise 5.16: Even when we can find the value of f (x) for any value of x the forward difference

can still be more accurate than the central difference for sufficiently large h. For what values

of h will the approximation error on the forward difference of Eq. (5.87) be smaller than on the

central difference of Eq. (5.95)?

Exercise 5.17: The gamma function

A commonly occurring function in physics calculations is the gamma function Γ(a), which is

defined by the integral

Γ(a) =
∫ ∞

0
xa−1e−x dx.

There is no closed-form expression for the gamma function, but one can calculate its value for

given a by performing the integral above numerically. You have to be careful how you do it,

however, if you wish to get an accurate answer.

a) Write a program to make a graph of the value of the integrand xa−1e−x as a function of x

from x = 0 to x = 5, with three separate curves for a = 2, 3, and 4, all on the same axes.

You should find that the integrand starts at zero, rises to a maximum, and then decays

again for each curve.

b) Show analytically that the maximum falls at x = a − 1.

c) Most of the area under the integrand falls near the maximum, so to get an accurate value

of the gamma function we need to do a good job of this part of the integral. We can

change the integral from 0 to ∞ to one over a finite range from 0 to 1 using the change

of variables in Eq. (5.67), but this tends to squash the peak towards the edge of the [0, 1]
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range and does a poor job of evaluating the integral accurately. We can do a better job by

making a different change of variables that puts the peak in the middle of the integration

range, around 1
2 . We will use the change of variables given in Eq. (5.69), which we repeat

here for convenience:

z =
x

c + x
.

For what value of x does this change of variables give z = 1
2? Hence what is the appropri-

ate choice of the parameter c that puts the peak of the integrand for the gamma function

at z = 1
2?

d) Before we can calculate the gamma function, there is another detail we need to attend

to. The integrand xa−1e−x can be difficult to evaluate because the factor xa−1 can become

very large and the factor e−x very small, causing numerical overflow or underflow, or

both, for some values of x. Write xa−1 = e(a−1) ln x to derive an alternative expression for

the integrand that does not suffer from these problems (or at least not so much). Explain

why your new expression is better than the old one.

e) Now, using the change of variables above and the value of c you have chosen, write a

user-defined function gamma(a) to calculate the gamma function for arbitrary argument a.

Use whatever integration method you feel is appropriate. Test your function by using it

to calculate and print the value of Γ(3
2), which is known to be equal to 1

2

√
π ≃ 0.886.

f) For integer values of a it can be shown that Γ(a) is equal to the factorial of a − 1. Use your

Python function to calculate Γ(3), Γ(6), and Γ(10). You should get answers closely equal

to 2! = 2, 5! = 120, and 9! = 362 880.

Exercise 5.18: Rearranging Eq. (5.19) into a slightly more conventional form, we have:

∫ b

a
f (x) dx = h

[

1
2 f (a) + 1

2 f (b) +
N−1

∑
k=1

f (a + kh)

]

+ 1
12 h2

[

f ′(a)− f ′(b)
]

+ O(h4).

This result gives a value for the integral on the left which has an error of order h4—a factor of

h2 better than the error on the trapezoidal rule and as good as Simpson’s rule. We can use this

formula as a new rule for evaluating integrals, distinct from any of the others we have seen in

this chapter. We might call it the “Euler–Maclaurin rule.”

a) Write a program to calculate the value of the integral
∫ 2

0 (x4 − 2x + 1) dx using this for-

mula. (This is the same integral that we studied in Example 5.1, whose true value is 4.4.)

The order-h term in the formula is just the ordinary trapezoidal rule; the h2 term involves

the derivatives f ′(a) and f ′(b), which you should evaluate using central differences, cen-

tered on a and b respectively. Note that the size of the interval you use for calculating the

central differences does not have to equal the value of h used in the trapezoidal rule part

of the calculation. An interval of about 10−5 gives good values for the central differences.

Use your program to evaluate the integral with N = 10 slices and compare the accuracy

of the result with that obtained from the trapezoidal rule alone with the same number of

slices.
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b) Good though it is, this integration method is not much used in practice. Suggest a reason

why not.

Exercise 5.19: Diffraction gratings

Light with wavelength λ is incident on a diffraction grating of total width w, gets diffracted, is

focused with a lens of focal length f , and falls on a screen:

x

In
ci

d
en

t 
li

g
h

t

Grating Lens
Screen

f

Theory tells us that the intensity of the diffraction pattern on the screen, a distance x from the

central axis of the system, is given by

I(x) =

∣

∣

∣

∣

∫ w/2

−w/2

√

q(u) ei2πxu/λ f du

∣

∣

∣

∣

2

,

where q(u) is the intensity transmission function of the diffraction grating at a distance u from

the central axis, i.e., the fraction of the incident light that the grating lets through.

a) Consider a grating with transmission function q(u) = sin2 αu. What is the separation of

the “slits” in this grating, expressed in terms of α?

b) Write a Python function q(u) that returns the transmission function q(u) = sin2 αu as

above at position u for a grating whose slits have separation 20 µm.

c) Use your function in a program to calculate and graph the intensity of the diffraction pat-

tern produced by such a grating having ten slits in total, if the incident light has wave-

length λ = 500 nm. Assume the lens has a focal length of 1 meter and the screen is 10 cm

wide. You can use whatever method you think appropriate for doing the integral. Once

you’ve made your choice you’ll also need to decide the number of sample points you’ll

use. What criteria play into this decision?

Notice that the integrand in the equation for I(x) is complex, so you will have to use

complex variables in your program. As mentioned in Section 2.2.5, there is a version of

the math package for use with complex variables called cmath. In particular you may find

the exp function from cmath useful because it can calculate the exponentials of complex

arguments.
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d) Create a visualization of how the diffraction pattern would look on the screen using a

density plot (see Section 3.3). Your plot should look something like this:

e) Modify your program further to make pictures of the diffraction patterns produced by

gratings with the following profiles:

i) A transmission profile that obeys q(u) = sin2 αu sin2 βu, with α as before and the

same total grating width w, and β = 1
2 α.

ii) Two “square” slits, meaning slits with 100% transmission through the slit and 0%

transmission everywhere else. Calculate the diffraction pattern for non-identical

slits, one 10 µm wide and the other 20 µm wide, with a 60 µm gap between the two.

Exercise 5.20: A more advanced adaptive method for the trapezoidal rule

In Section 5.3 we studied an adaptive version of the trapezoidal rule in which the number

of steps is increased—and the width h of the slices correspondingly decreased—until the cal-

culation gives a value for the integral accurate to some desired level. Although this method

varies h, it still calculates the integral at any individual stage of the process using slices of equal

width throughout the domain of integration. In this exercise we look at a more sophisticated

form of the trapezoidal rule that uses different step sizes in different parts of the domain, which

can be useful particularly for poorly behaved functions that vary rapidly in certain regions but

not others. Remarkably, this method is not much more complicated to program than the ones

we’ve already seen, if one knows the right tricks. Here’s how the method works.

Suppose we wish to evaluate the integral I =
∫ b

a f (x) dx and we want an error of no more

than ǫ on our answer. To put that another way, if we divide up the integral into slices of width h

then we require an accuracy per slice of

h
ǫ

b − a
= hδ,

where δ = ǫ/(b − a) is the target accuracy per unit interval.

We start by evaluating the integral using the trapezoidal rule with just a single slice of width

h1 = b − a. Let us call the estimate of the integral from this calculation I1. Usually I1 will not be

very accurate, but that doesn’t matter. Next we make a second estimate I2 of the integral, again

using the trapezoidal rule but now with two slices of width h2 = 1
2 h1 each. Equation (5.28) tells

us that the error on this second estimate is 1
3(I2 − I1) to leading order. If the absolute value of

this error is smaller than the required accuracy ǫ then our calculation is complete and we need

go no further. I2 is a good enough estimate of the integral.

Most likely, however, this will not be the case; the accuracy will not be good enough. If

so, then we divide the integration interval into two equal parts of size 1
2(b − a) each, and we

repeat the process above in each part separately, calculating estimates I1 and I2 using one and
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two slices respectively, estimating the error, and checking to see if it is less than the required

accuracy, which is now 1
2(b − a)δ = 1

2 ǫ.

We keep on repeating this process, dividing each slice in half and in half again, as many

times as necessary to achieve the desired accuracy in every slice. Different slices may be di-

vided different numbers of times, and hence we may end up with different sized slices in

different parts of the integration domain. The method automatically uses whatever size and

number of slices is appropriate in each region.

a) Write a program using this method to calculate the integral

I =
∫ 10

0

sin2 x

x2
dx,

to an accuracy of ǫ = 10−4. Start by writing a function to calculate the integrand f (x) =
(sin2 x)/x2. Note that the limiting value of the integrand at x = 0 is 1. You’ll probably

have to include this point as a special case in your function using an if statement.

The best way to perform the integration itself is to make use of the technique of recursion,

the ability of a Python function to call itself. (If you’re not familiar with recursion, you

may like to look at Exercise 2.13 on page 83 before doing this exercise.) Write a function

step(x1,x2,f1,f2) that takes as arguments the beginning and end points x1, x2 of a slice

and the values f (x1), f (x2) of the integrand at those two points, and returns the value of

the integral from x1 to x2. This function should evaluate the two estimates I1 and I2 of

the integral from x1 to x2, calculated with one and two slices respectively, and the error
1
3(I2 − I1). If this error meets the target value, which is (x2 − x1)δ, then the calculation

is complete and the function simply returns the value I2. If the error fails to meet the

target, then the function calls itself, twice, to evaluate the integral separately on the first

and second halves of the interval and returns the sum of the two results. (And then those

functions can call themselves, and so forth, subdividing the integral as many times as

necessary to reach the required accuracy.)

Hint: As icing on the cake, when the error target is met and the function returns a value

for the integral in the current slice, it can, in fact, return a slightly better value than the

estimate I2. Since you will already have calculated the value of the integrand f (x) at

x1, x2, and the midpoint xm = 1
2(x1 + x2) in order to evaluate I2, you can use those

results to compute the improved Simpson’s rule estimate, Eq. (5.7), for this slice. You

just return the value 1
6 h[ f (x1) + 4 f (xm) + f (x2)] instead of the trapezoidal rule estimate

1
4 h[ f (x1) + 2 f (xm) + f (x2)] (where h = x2 − x1). This involves very little extra work, but

gives a value that is more accurate by two orders in h. (Technically, this is an example

of the method of “local extrapolation,” although it’s perhaps not obvious what we’re

extrapolating in this case. We’ll discuss local extrapolation again when we study adaptive

methods for the solution of differential equations in Section 8.4.)

b) Why does the function step(x1,x2,f1,f2) take not only the positions x1 and x2 as argu-

ments, but also the values f (x1) and f (x2)? Since we know the function f (x), we could

just calculate these values from x1 and x2. Nonetheless, it is a smart move to include the

values of f (x1) and f (x2) as arguments to the function. Why?
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c) Modify your program to make a plot of the integrand with dots added showing where the

ends of each integration slice lie. You should see larger slices in portions of the integrand

that follow reasonably straight lines (because the trapezoidal rule gives an accurate value

for straight-line integrands) and smaller slices in portions with more curvature.

Exercise 5.21: Electric field of a charge distribution

Suppose we have a distribution of charges and we want to calculate the resulting electric field.

One way to do this is to first calculate the electric potential φ and then take its gradient. For a

point charge q at the origin, the electric potential at a distance r from the origin is φ = q/4πǫ0r

and the electric field is E = −∇φ.

a) You have two charges, of ±1 C, 10 cm apart. Calculate the resulting electric potential on

a 1 m × 1 m square plane surrounding the charges and passing through them. Calculate

the potential at 1 cm spaced points in a grid and make a visualization on the screen of the

potential using a density plot.

b) Now calculate the partial derivatives of the potential with respect to x and y and hence

find the electric field in the xy plane. Make a visualization of the field also. This is a

little trickier than visualizing the potential, because the electric field has both magnitude

and direction. One way to do it might be to make two density plots, one for the magni-

tude, and one for the direction, the latter using the “hsv” color scheme in pylab, which

is a rainbow scheme that passes through all the colors but starts and ends with the same

shade of red, which makes it suitable for representing things like directions or angles that

go around the full circle and end up where they started. A more sophisticated visualiza-

tion might use the arrow object from the visual package, drawing a grid of arrows with

direction and length chosen to represent the field.

c) Now suppose you have a continuous distribution of charge over an L × L square. The

charge density in Cm−2 is

σ(x, y) = q0 sin
2πx

L
sin

2πy

L
.

Calculate and visualize the resulting electric field at 1 cm-spaced points in 1 square meter

of the xy plane for the case where L = 10 cm, the charge distribution is centered in the

middle of the visualized area, and q0 = 100 Cm−2. You will have to perform a double

integral over x and y, then differentiate the potential with respect to position to get the

electric field. Choose whatever integration method seems appropriate for the integrals.

Exercise 5.22: Differentiating by integrating

If you are familiar with the calculus of complex variables, you may find the following technique

useful and interesting.

Suppose we have a function f (z) whose value we know not only on the real line but also

for complex values of its argument. Then we can calculate derivatives of that function at any
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point z0 by performing a contour integral, using the Cauchy derivative formula:

(

dmf

dzm

)

z=z0

=
m!

2πi

∮

f (z)

(z − z0)m+1
dz,

where the integral is performed counterclockwise around any contour in the complex plane

that surrounds the point z0 but contains no poles in f (z). Since numerical integration is sig-

nificantly easier and more accurate than numerical differentiation, this formula provides us

with a method for calculating derivatives—and especially multiple derivatives—accurately by

turning them into integrals.

Suppose, for example, that we want to calculate derivatives of f (z) at z = 0. Let us apply

the Cauchy formula above using the trapezoidal rule to calculate the integral along a circular

contour centered on the origin with radius 1. The trapezoidal rule will be slightly different

from the version we are used to because the value of the interval h is now a complex number,

and moreover is not constant from one slice of the integral to the next—it stays constant in

modulus, but its argument changes from one slice to another.

We will divide our contour integral into N slices with sample points zk distributed uni-

formly around the circular contour at the positions zk = ei2πk/N for k = 0 . . . N. Then the

distance between consecutive sample points is

hk = zk+1 − zk = ei2π(k+1)/N − ei2πk/N ,

and, introducing the shorthand g(z) = f (z)/zm+1 for the integrand, the trapezoidal rule ap-

proximation to the integral is

∮

g(z) dz ≃
N−1

∑
k=0

1
2

[

g(zk+1) + g(zk)
][

ei2π(k+1)/N − ei2πk/N
]

= 1
2

[N−1

∑
k=0

g(zk+1) ei2π(k+1)/N −
N−1

∑
k=0

g(zk) ei2πk/N

−
N−1

∑
k=0

g(zk+1) ei2πk/N +
N−1

∑
k=0

g(zk) ei2π(k+1)/N

]

.

Noting that zN = z0, the first two sums inside the brackets cancel each other in their entirety,

and the remaining two sums are equal except for trivial phase factors, so the entire expression

simplifies to

∮

g(z) dz ≃ 1
2

[

ei2π/N − e−i2π/N
]

N−1

∑
k=0

g(zk) ei2πk/N

≃ 2πi

N

N−1

∑
k=0

f (zk) e−i2πkm/N ,

where we have used the definition of g(z) again. Combining this result with the Cauchy for-

mula, we then have
(

dmf

dzm

)

z=0

≃ m!

N

N−1

∑
k=0

f (zk) e−i2πkm/N .
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Write a program to calculate the first twenty derivatives of f (z) = e2z at z = 0 using this

formula with N = 10000. You will need to use the version of the exp function from the cmath

package, which can handle complex arguments. You may also find the function factorial

from the math package useful; it calculates factorials of integer arguments.

The correct value for the mth derivative in this case is easily shown to be 2m, so it should

be straightforward to tell if your program is working—the results should be powers of two,

2, 4, 8, 16, 32, etc. You should find that it is possible to get reasonably accurate results for all

twenty derivatives rapidly using this technique. If you use standard difference formulas for the

derivatives, on the other hand, you will find that you can calculate only the first three or four

derivatives accurately before the numerical errors become so large that the results are useless.

In this case, therefore, the Cauchy formula gives the better results.

The sum ∑k f (zk) ei2πkm/N that appears in the formula above is known as the discrete Fourier

transform of the complex samples f (zk). There exists an elegant technique for evaluating the

Fourier transform for many values of m simultaneously, known as the fast Fourier transform,

which could be useful in cases where the direct evaluation of the formula is slow. We will

study the fast Fourier transform in detail in Chapter 7.

Exercise 5.23: Image processing and the STM

When light strikes a surface, the amount falling per unit area depends not only on the intensity

of the light, but also on the angle of incidence. If the light makes an angle θ to the normal, it

only “sees” cos θ of area per unit of actual area on the surface:

θ What the light sees

surface

light

So the intensity of illumination is a cos θ, if a is the raw intensity of the light. This simple

physical law is a central element of 3D computer graphics. It allows us to calculate how light

falls on three-dimensional objects and hence how they will look when illuminated from various

angles.

Suppose, for instance, that we are looking down on the Earth from above and we see moun-

tains. We know the height of the mountains w(x, y) as a function of position in the plane, so

the equation for the Earth’s surface is simply z = w(x, y), or equivalently w(x, y)− z = 0, and

the normal vector v to the surface is given by the gradient of w(x, y)− z thus:

v = ∇[w(x, y)− z] =





∂/∂x

∂/∂y

∂/∂z



 [w(x, y)− z] =





∂w/∂x

∂w/∂y

−1



 .

Now suppose we have light coming in represented by a vector a with magnitude equal to the

intensity of the light. Then the dot product of the vectors a and v is

a · v = |a| |v| cos θ,
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where θ is the angle between the vectors. Thus the intensity of illumination of the surface of

the mountains is

I = |a| cos θ =
a · v

|v| =
ax(∂w/∂x) + ay(∂w/∂y)− az
√

(∂w/∂x)2 + (∂w/∂y)2 + 1
.

Let’s take a simple case where the light is shining horizontally with unit intensity, along a line

an angle φ counter-clockwise from the east-west axis, so that a = (cos φ, sin φ, 0). Then our

intensity of illumination simplifies to

I =
cos φ (∂w/∂x) + sin φ (∂w/∂y)
√

(∂w/∂x)2 + (∂w/∂y)2 + 1
.

If we can calculate the derivatives of the height w(x, y) and we know φ we can calculate the

intensity at any point.

a) In the on-line resources you’ll find a file called altitude.txt, which contains the alti-

tude w(x, y) in meters above sea level (or depth below sea level) of the surface of the

Earth, measured on a grid of points (x, y). Write a program that reads this file and stores

the data in an array. Then calculate the derivatives ∂w/∂x and ∂w/∂y at each grid point.

Explain what method you used to calculate them and why. (Hint: You’ll probably have

to use more than one method to get every grid point, because awkward things happen at

the edges of the grid.) To calculate the derivatives you’ll need to know the value of h, the

distance in meters between grid points, which is about 30 000 m in this case. (It’s actually

not precisely constant because we are representing the spherical Earth on a flat map, but

h = 30 000 m will give reasonable results.)

b) Now, using your values for the derivatives, calculate the intensity for each grid point,

with φ = 45◦, and make a density plot of the resulting values in which the brightness of

each dot depends on the corresponding intensity value. If you get it working right, the

plot should look like a relief map of the world—you should be able to see the continents

and mountain ranges in 3D. (Common problems include a map that is upside-down or

sideways, or a relief map that is “inside-out,” meaning the high regions look low and vice

versa. Work with the details of your program until you get a map that looks right to you.)

Hint: Note that the value of the intensity I from the formula above can be either positive

or negative—it ranges from +1 to −1. What does a negative intensity mean? It means

that the area in question is in shadow—it lies on the wrong side of the mountain to receive

any light at all. You could represent this by coloring those areas of the map completely

black, although in practice you will get a nicer-looking image (if arguably less true-to-life)

by simply using a continuous range of grays from +1 to −1.

c) There is another file in the on-line resources called stm.txt, which contains a grid of val-

ues from scanning tunneling microscope measurements of the (111) surface of silicon. A

scanning tunneling microscope (STM) is a device that measures the shape of surfaces at

the atomic level by tracking a sharp tip over the surface and measuring quantum tun-

neling current as a function of position. The end result is a grid of values that represent

the height of the surface as a function of position and the data in the file stm.txt contain
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just such a grid of values. Modify the program you just wrote to visualize the STM data

and hence create a 3D picture of what the silicon surface looks like. The value of h for the

derivatives in this case is around h = 2.5 (in arbitrary units).
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