
COMPUTATIONAL PHYSICS

EXERCISES FOR CHAPTER 7

Exercise 7.1: Fourier transforms of simple functions

Write Python programs to calculate the coefficients in the discrete Fourier transforms of the

following periodic functions sampled at N = 1000 evenly spaced points, and make plots of

their amplitudes similar to the plot shown in Fig. 7.4:

a) A single cycle of a square-wave with amplitude 1

b) The sawtooth wave yn = n

c) The modulated sine wave yn = sin(πn/N) sin(20πn/N)

If you wish you can use the Fourier transform function from the file dft.py as a starting point

for your program.

Exercise 7.2: Detecting periodicity

In the on-line resources there is a file called sunspots.txt, which contains the observed number

of sunspots on the Sun for each month since January 1749. The file contains two columns of

numbers, the first representing the month and the second being the sunspot number.

a) Write a program that reads the data in the file andmakes a graph of sunspots as a function

of time. You should see that the number of sunspots has fluctuated on a regular cycle for

as long as observations have been recorded. Make an estimate of the length of the cycle

in months.

b) Modify your program to calculate the Fourier transform of the sunspot data and then

make a graph of the magnitude squared |ck|
2 of the Fourier coefficients as a function

of k—also called the power spectrum of the sunspot signal. You should see that there

is a noticeable peak in the power spectrum at a nonzero value of k. The appearance

of this peak tells us that there is one frequency in the Fourier series that has a higher

amplitude than the others around it—meaning that there is a large sine-wave term with

this frequency, which corresponds to the periodic wave you can see in the original data.

c) Find the approximate value of k to which the peak corresponds. What is the period of the

sine wave with this value of k? You should find that the period corresponds roughly to

the length of the cycle that you estimated in part (a).

This kind of Fourier analysis is a sensitive method for detecting periodicity in signals. Even in

cases where it is not clear to the eye that there is a periodic component to a signal, it may still

be possible to find one using a Fourier transform.

Exercise 7.3: Fourier transforms of musical instruments

In the on-line resources you will find files called piano.txt and trumpet.txt, which contain

data representing thewaveform of a single note, played on, respectively, a piano and a trumpet.
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a) Write a program that loads a waveform from one of these files, plots it, then calculates

its discrete Fourier transform and plots the magnitudes of the first 10 000 coefficients in a

manner similar to Fig. 7.4. Note that you will have to use a fast Fourier transform for the

calculation because there are too many samples in the files to do the transforms the slow

way in any reasonable amount of time.

Apply your program to the piano and trumpet waveforms and discuss briefly what one

can conclude about the sound of the piano and trumpet from the plots of Fourier coeffi-

cients.

b) Both waveforms were recorded at the industry-standard rate of 44 100 samples per sec-

ond and both instruments were playing the same musical note when the recordings were

made. From your Fourier transform results calculate what note they were playing. (Hint:

The musical note middle C has a frequency of 261Hz.)

Exercise 7.4: Fourier filtering and smoothing

In the on-line resources you’ll find a file called dow.txt. It contains the daily closing value for

each business day from late 2006 until the end of 2010 of the Dow Jones Industrial Average,

which is a measure of average prices on the US stock market.

Write a program to do the following:

a) Read in the data from dow.txt and plot them on a graph.

b) Calculate the coefficients of the discrete Fourier transform of the data using the function

rfft from numpy.fft, which produces an array of 1
2N + 1 complex numbers.

c) Now set all but the first 10% of the elements of this array to zero (i.e., set the last 90% to

zero but keep the values of the first 10%).

d) Calculate the inverse Fourier transform of the resulting array, zeros and all, using the

function irfft, and plot it on the same graph as the original data. You may need to vary

the colors of the two curves to make sure they both show up on the graph. Comment on

what you see. What is happening when you set the Fourier coefficients to zero?

e) Modify your program so that it sets all but the first 2% of the coefficients to zero and run

it again.

Exercise 7.5: If you have not done Exercise 7.4 you should do it before this one.

The function f (t) represents a square-wave with amplitude 1 and frequency 1Hz:

f (t) =

{

1 if ⌊2t⌋ is even,
−1 if ⌊2t⌋ is odd,

(1)

where ⌊x⌋ means x rounded down to the next lowest integer. Let us attempt to smooth this

function using a Fourier transform, as we did in the previous exercise. Write a program that

creates an array of N = 1000 elements containing a thousand equally spaced samples from a

single cycle of this square-wave. Calculate the discrete Fourier transform of the array. Now
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set all but the first ten Fourier coefficients to zero, then invert the Fourier transform again

to recover the smoothed signal. Make a plot of the result and on the same axes show the

original square-wave as well. You should find that the signal is not simply smoothed—there

are artifacts, wiggles, in the results. Explain briefly where these come from.

Artifacts similar to these arise when Fourier coefficients are discarded in audio and visual

compression schemes like those described in Section 7.3.1 and are the primary source of imper-

fections in digitally compressed sound and images.

Exercise 7.6: Comparison of the DFT and DCT

This exercise will be easier if you have already done Exercise 7.4.

Exercise 7.4 looked at data representing the variation of the Dow Jones Industrial Average,

colloquially called “the Dow,” over time. The particular time period studied in that exercise

was special in one sense: the value of the Dow at the end of the period was almost the same

as at the start, so the function was, roughly speaking, periodic. In the on-line resources there

is another file called dow2.txt, which also contains data on the Dow but for a different time

period, from 2004 until 2008. Over this period the value changed considerably from a starting

level around 9000 to a final level around 14000.

a) Write a program similar to the one for Exercise 7.4, part (e), in which you read the data in

the file dow2.txt and plot it on a graph. Then smooth the data by calculating its Fourier

transform, setting all but the first 2% of the coefficients to zero, and inverting the trans-

form again, plotting the result on the same graph as the original data. As in Exercise 7.4

you should see that the data are smoothed, but now there will be an additional artifact.

At the beginning and end of the plot you should see large deviations away from the true

smoothed function. These occur because the function is required to be periodic—its last

value must be the same as its first—so it needs to deviate substantially from the correct

value to make the two ends of the function meet. In some situations (including this one)

this behavior is unsatisfactory. If we want to use the Fourier transform for smoothing, we

would certainly prefer that it not introduce artifacts of this kind.

b) Modify your program to repeat the same analysis using discrete cosine transforms. You

can use the functions from dcst.py to perform the transforms if you wish. Again discard

all but the first 2% of the coefficients, invert the transform, and plot the result. You should

see a significant improvement, with less distortion of the function at the ends of the inter-

val. This occurs because, as discussed at the end of Section 7.3, the cosine transform does

not force the value of the function to be the same at both ends.

It is because of the artifacts introduced by the strict periodicity of the DFT that the cosine trans-

form is favored for many technological applications, such as audio compression. The artifacts

can degrade the sound quality of compressed audio and the cosine transform generally gives

better results.

The cosine transform is not wholly free of artifacts itself however. It’s true it does not

force the function to be periodic, but it does force the gradient to be zero at the ends of the

interval (which the ordinary Fourier transform does not). You may be able to see this in your

calculations for part (b) above. Look closely at the smoothed function and you should see
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that its slope is flat at the beginning and end of the interval. The distortion of the function

introduced is less than the distortion in part (a), but it’s there all the same. To reduce this effect,

audio compression schemes often use overlapped cosine transforms, in which transforms are

performed on overlapping blocks of samples, so that the portions at the ends of blocks, where

the worst artifacts lie, need not be used.

Exercise 7.7: Fast Fourier transform

Write your own program to compute the fast Fourier transform for the case where N is a power

of two, based on the formulas given in Section 7.4.1. As a test of your program, use it to

calculate the Fourier transform of the data in the file pitch.txt, which can be found in the

on-line resources. A plot of the data is shown in Fig. 7.3. You should be able to duplicate the

results for the Fourier transform shown in Fig. 7.4.

This exercise is quite tricky. You have to calculate the coefficients E
(m,j)
k from Eq. (7.43) for all

levelsm, which means that first you will have to plan how the coefficients will be stored. Since,

as we have seen, there are exactly N of them at every level, one way to do it would be to create

a two-dimensional complex array of size N × (1 + log2 N), so that it has N complex numbers

for each level from zero to log2 N. Then within level m you have 2m individual transforms

denoted by j = 0 . . . 2m− 1, each with N/2m coefficients indexed by k. A simple way to arrange

the coefficients would be to put all the k = 0 coefficients in a block one after another, then all

the k = 1 coefficients, and so forth. Then E
(m,j)
k would be stored in the j + 2mk element of the

array.

This method has the advantage of being quite simple to program, but the disadvantage of

using up a lot of memory space. The array contains N log2 N complex numbers, and a complex

number typically takes sixteen bytes of memory to store. So if you had to do a large Fourier

transform of, say, N = 108 numbers, it would take 16N log2 N ≃ 42 gigabytes of memory,

which is much more than most computers have.

An alternative approach is to notice that we do not really need to store all of the coefficients.

At any one point in the calculation we only need the coefficients at the current level and the

previous level (from which the current level is calculated). If one is clever one can write a

program that uses only two arrays, one for the current level and one for the previous level,

each consisting of N complex numbers. Then our transform of 108 numbers would require less

than four gigabytes, which is fine on most computers.

(There is a third way of storing the coefficients that is even more efficient. If you store the

coefficients in the correct order, then you can arrange things so that every time you compute

a coefficient for the next level, it gets stored in the same place as the old coefficient from the

previous level from which it was calculated, and which you no longer need. With this way of

doing things you only need one array of N complex numbers—we say the transform is done

“in place.” Unfortunately, this in-place Fourier transform is much harder to work out and

harder to program. If you are feeling particularly ambitious you might want to give it a try, but

it’s not for the faint-hearted.)

Exercise 7.8: Diffraction gratings

Exercise 5.19 (page 206) looked at the physics of diffraction gratings, calculating the intensity
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of the diffraction patterns they produce from the equation

I(x) =

∣

∣

∣

∣

∫ w/2

−w/2

√

q(u) ei2πxu/λ f du

∣

∣

∣

∣

2

,

where w is the width of the grating, λ is the wavelength of the light, f is the focal length of the

lens used to focus the image, and q(u) is the intensity transmission function of the diffraction

grating at a distance u from the central axis, i.e., the fraction of the incident light that the grating

lets through. In Exercise 5.19 we evaluated this expression directly using standard methods for

performing integrals, but a more efficient way to do the calculation is to note that the integral

is in fact just a Fourier transform. Approximating the integral, as we did in Eq. (7.13), using

the trapezoidal rule, with N points un = nw/N − w/2, we get

∫ w/2

−w/2

√

q(u) ei2πxu/λ f du ≃
w

N
eiπwx/λ f

N−1

∑
n=0

√

q(un) e
i2πwxn/λ f N

=
w

N
eiπk

N−1

∑
n=0

yn e
i2πkn/N ,

where k = wx/λ f and yn =
√

q(un). Comparing with Eq. (7.15), we see that the sum in

this expression is equal to the complex conjugate c∗k of the kth coefficient of the DFT of yn.

Substituting into the expression for the intensity I(x), we then have

I(xk) =
w2

N2
|ck|

2,

where

xk =
λ f

w
k.

Thus we can calculate the intensity of the diffraction pattern at the points xk by performing a

Fourier transform.

There is a catch, however. Given that k is an integer, k = 0 . . .N − 1, the points xk at

which the intensity is evaluated have spacing λ f/w on the screen. This spacing can be large

in some cases, giving us only a rather coarse picture of the diffraction pattern. For instance, in

Exercise 5.19 we had λ = 500 nm, f = 1m, and w = 200 µm, and the screen was 10 cm wide,

which means that λ f/w = 2.5mm and we have only forty points on the screen. This is not

enough to make a usable plot of the diffraction pattern.

One way to fix this problem is to increase the width of the grating from the given value w

to a larger value W > w, which makes the spacing λ f/W of the points on the screen closer.

We can add the extra width on one or the other side of the grating, or both, as we prefer, but—

and this is crucial—the extra portion added must be opaque, it must not transmit light, so that

the physics of the system does not change. In other words, we need to “pad out” the data

points yn that measure the transmission profile of the grating with additional zeros so as to

make the grating wider while keeping its transmission properties the same. For example, to

increase the width to W = 10w, we would increase the number N of points yn by a factor of

ten, with the extra points set to zero. The extra points can be at the beginning, at the end, or
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split between the two—it will make no difference to the answer. Then the intensity is given by

I(xk) =
W2

N2
|ck|

2,

where

xk =
λ f

W
k.

Write a Python program that uses a fast Fourier transform to calculate the diffraction pattern

for a grating with transmission function q(u) = sin2 αu (the same as in Exercise 5.19), with

slits of width 20 µm [meaning that α = π/(20 µm)] and parameters as above: w = 200 µm,

W = 10w = 2mm, incident light of wavelength λ = 500 nm, a lens with focal length of 1 meter,

and a screen 10 cm wide. Choose a suitable number of points to give a good approximation

to the grating transmission function and then make a graph of the diffraction intensity on the

screen as a function of position x in the range −5 cm ≤ x ≤ 5 cm. If you previously did

Exercise 5.19, check to make sure your answers to the two exercises agree.

Exercise 7.9: Image deconvolution

You’ve probably seen it on TV, in one of those crime drama shows. They have a blurry photo of

a crime scene and they click a few buttons on the computer and magically the photo becomes

sharp and clear, so you can make out someone’s face, or some lettering on a sign. Surely (like

almost everything else on such TV shows) this is just science fiction? Actually, no. It’s not. It’s

real and in this exercise you’ll write a program that does it.

When a photo is blurred each point on the photo gets smeared out according to some

“smearing distribution,” which is technically called a point spread function. We can represent

this smearing mathematically as follows. For simplicity let’s assume we’re working with a

black and white photograph, so that the picture can be represented by a single function a(x, y)
which tells you the brightness at each point (x, y). And let us denote the point spread function

by f (x, y). This means that a single bright dot at the origin ends up appearing as f (x, y) in-

stead. If f (x, y) is a broad function then the picture is badly blurred. If it is a narrow peak then

the picture is relatively sharp.

In general the brightness b(x, y) of the blurred photo at point (x, y) is given by

b(x, y) =
∫ K

0

∫ L

0
a(x′, y′) f (x− x′, y− y′) dx′ dy′,

where K × L is the dimension of the picture. This equation is called the convolution of the

picture with the point spread function.

Working with two-dimensional functions can get complicated, so to get the idea of how the

math works, let’s switch temporarily to a one-dimensional equivalent of our problem. Once

we work out the details in 1D we’ll return to the 2D version. The one-dimensional version of

the convolution above would be

b(x) =
∫ L

0
a(x′) f (x− x′) dx′.
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The function b(x) can be represented by a Fourier series as in Eq. (7.5):

b(x) =
∞

∑
k=−∞

b̃k exp

(

i
2πkx

L

)

,

where

b̃k =
1

L

∫ L

0
b(x) exp

(

−i
2πkx

L

)

dx

are the Fourier coefficients. Substituting for b(x) in this equation gives

b̃k =
1

L

∫ L

0

∫ L

0
a(x′) f (x− x′) exp

(

−i
2πkx

L

)

dx′ dx

=
1

L

∫ L

0

∫ L

0
a(x′) f (x− x′) exp

(

−i
2πk(x− x′)

L

)

exp

(

−i
2πkx′

L

)

dx′ dx.

Now let us change variables to X = x− x′, and we get

b̃k =
1

L

∫ L

0
a(x′) exp

(

−i
2πkx′

L

)

∫ L−x′

−x′
f (X) exp

(

−i
2πkX

L

)

dX dx′.

If we make f (x) a periodic function in the standard fashion by repeating it infinitely many

times to the left and right of the interval from 0 to L, then the second integral above can be

written as

∫ L−x′

−x′
f (X) exp

(

−i
2πkX

L

)

dX =
∫ 0

−x′
f (X) exp

(

−i
2πkX

L

)

dX

+
∫ L−x′

0
f (X) exp

(

−i
2πkX

L

)

dX

= exp

(

i
2πkL

L

)

∫ L

L−x′
f (X) exp

(

−i
2πkX

L

)

dX +
∫ L−x′

0
f (X) exp

(

−i
2πkX

L

)

dX

=
∫ L

0
f (X) exp

(

−i
2πkX

L

)

dX,

which is simply L times the Fourier transform f̃k of f (x). Substituting this result back into our

equation for b̃k we then get

b̃k =
∫ L

0
a(x′) exp

(

−i
2πkx′

L

)

f̃k dx
′ = L ãk f̃k.

In other words, apart from the factor of L, the Fourier transform of the blurred photo is the

product of the Fourier transforms of the unblurred photo and the point spread function.

Now it is clear how we deblur our picture. We take the blurred picture and Fourier trans-

form it to get b̃k = L ãk f̃k. We also take the point spread function and Fourier transform it to

get f̃k. Then we divide one by the other:

b̃k

L f̃k
= ãk
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which gives us the Fourier transform of the unblurred picture. Then, finally, we do an inverse

Fourier transform on ãk to get back the unblurred picture. This process of recovering the un-

blurred picture from the blurred one, of reversing the convolution process, is called deconvolu-

tion.

Real pictures are two-dimensional, but the mathematics follows through exactly the same.

For a picture of dimensions K × L we find that the two-dimensional Fourier transforms are

related by

b̃kl = KLãkl f̃kl ,

and again we just divide the blurred Fourier transform by the Fourier transform of the point

spread function to get the Fourier transform of the unblurred picture.

In the digital realm of computers, pictures are not pure functions f (x, y) but rather grids

of samples, and our Fourier transforms are discrete transforms not continuous ones. But the

math works out the same again.

The main complication with deblurring in practice is that we don’t usually know the point

spread function. Typically we have to experiment with different ones until we find something

that works. For many cameras it’s a reasonable approximation to assume the point spread

function is Gaussian:

f (x, y) = exp

(

−
x2 + y2

2σ2

)

,

where σ is the width of the Gaussian. Even with this assumption, however, we still don’t know

the value of σ and we may have to experiment to find a value that works well. In the following

exercise, for simplicity, we’ll assume we know the value of σ.

a) On the web site you will find a file called blur.txt that contains a grid of values repre-

senting brightness on a black-and-white photo—a badly out-of-focus one that has been

deliberately blurred using a Gaussian point spread function of width σ = 25. Write a

program that reads the grid of values into a two-dimensional array of real numbers and

then draws the values on the screen of the computer as a density plot. You should see

the photo appear. If you get something wrong it might be upside-down. Work with the

details of your program until you get it appearing correctly. (Hint: The picture has the

sky, which is bright, at the top and the ground, which is dark, at the bottom.)

b) Write another program that creates an array, of the same size as the photo, containing a

grid of samples drawn from the Gaussian f (x, y) above with σ = 25. Make a density

plot of these values on the screen too, so that you get a visualization of your point spread

function. Remember that the point spread function is periodic (along both axes), which

means that the values for negative x and y are repeated at the end of the interval. Since

the Gaussian is centered on the origin, this means there should be bright patches in each

of the four corners of your picture, something like this:
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c) Combine your two programs and add Fourier transforms using the functions rfft2 and

irfft2 from numpy.fft, to make a program that does the following:

i) Reads in the blurred photo

ii) Calculates the point spread function

iii) Fourier transforms both

iv) Divides one by the other

v) Performs an inverse transform to get the unblurred photo

vi) Displays the unblurred photo on the screen

When you are done, you should be able to make out the scene in the photo, although

probably it will still not be perfectly sharp.

Hint: One thing you’ll need to deal with is what happens when the Fourier transform of

the point spread function is zero, or close to zero. In that case if you divide by it you’ll get

an error (because you can’t divide by zero) or just a very large number (because you’re

dividing by something small). A workable compromise is that if a value in the Fourier

transform of the point spread function is smaller than a certain amount ǫ you don’t divide

by it—just leave that coefficient alone. The value of ǫ is not very critical but a reasonable

value seems to be 10−3.

d) Bearing in mind this last point about zeros in the Fourier transform, what is it that limits

our ability to deblur a photo? Why can we not perfectly unblur any photo and make it

completely sharp?

We have seen this process in action here for a normal snapshot, but it is also used in many

physics applications where one takes photos. For instance, it is used in astronomy to enhance

photos taken by telescopes. It was famously used with images from the Hubble Space Tele-

scope after it was realized that the telescope’s main mirror had a serious manufacturing flaw

and was returning blurry photos—scientists managed to partially correct the blurring using

Fourier transform techniques.
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