
COMPUTATIONAL PHYSICS

EXERCISES FOR CHAPTER 8

Exercise 8.1: A low-pass filter

Here is a simple electronic circuit with one resistor and one capacitor:

0

V out

IR

C

Vin

This circuit acts as a low-pass filter: you send a signal in on the left and it comes out filtered on

the right.

Using Ohm’s law and the capacitor law and assuming that the output load has very high

impedance, so that a negligible amount of current flows through it, we can write down the

equations governing this circuit as follows. Let I be the current that flows through R and into

the capacitor, and let Q be the charge on the capacitor. Then:

IR = Vin −Vout , Q = CVout , I =
dQ

dt
.

Substituting the second equation into the third, then substituting the result into the first equa-

tion, we find that Vin −Vout = RC (dVout/dt), or equivalently

dVout

dt
=

1

RC

(

Vin −Vout

)

.

a) Write a program (or modify a previous one) to solve this equation for Vout(t) using the

fourth-order Runge–Kutta method when in the input signal is a square-wave with fre-

quency 1 and amplitude 1:

Vin(t) =

{

1 if ⌊2t⌋ is even,

−1 if ⌊2t⌋ is odd,
(1)

where ⌊x⌋ means x rounded down to the next lowest integer. Use the program to make

plots of the output of the filter circuit from t = 0 to t = 10 when RC = 0.01, 0.1, and 1,

with initial condition Vout(0) = 0. You will have to make a decision about what value

of h to use in your calculation. Small values give more accurate results, but the program

will take longer to run. Try a variety of different values and choose one for your final

calculations that seems sensible to you.

1

b) Based on the graphs produced by your program, describe what you see and explain what

the circuit is doing.

A program similar to the one you wrote is running inside most stereos and music players,

to create the effect of the “bass” control. In the old days, the bass control on a stereo would

have been connected to a real electronic low-pass filter in the amplifier circuitry, but these days

there is just a computer processor that simulates the behavior of the filter in a manner similar

to your program.

Exercise 8.2: The Lotka–Volterra equations

The Lotka–Volterra equations are a mathematical model of predator–prey interactions between

biological species. Let two variables x and y be proportional to the size of the populations of

two species, traditionally called “rabbits” (the prey) and “foxes” (the predators). You could

think of x and y as being the population in thousands, say, so that x = 2 means there are 2000

rabbits. Strictly the only allowed values of x and y would then be multiples of 0.001, since you

can only have whole numbers of rabbits or foxes. But 0.001 is a pretty close spacing of values,

so it’s a decent approximation to treat x and y as continuous real numbers so long as neither

gets very close to zero.

In the Lotka–Volterra model the rabbits reproduce at a rate proportional to their popula-

tion, but are eaten by the foxes at a rate proportional to both their own population and the

population of foxes:
dx

dt
= αx− βxy,

where α and β are constants. At the same time the foxes reproduce at a rate proportional the

rate at which they eat rabbits—because they need food to grow and reproduce—but also die of

old age at a rate proportional to their own population:

dy

dt
= γxy− δy,

where γ and δ are also constants.

a) Write a program to solve these equations using the fourth-order Runge–Kutta method for

the case α = 1, β = γ = 0.5, and δ = 2, starting from the initial condition x = y = 2.

Have the program make a graph showing both x and y as a function of time on the same

axes from t = 0 to t = 30. (Hint: Notice that the differential equations in this case do not

depend explicitly on time t—in vector notation, the right-hand side of each equation is a

function f (r) with no t dependence. You may nonetheless find it convenient to define a

Python function f(r,t) including the time variable, so that your program takes the same

form as programs given earlier in this chapter. You don’t have to do it that way, but it can

avoid some confusion. Several of the following exercises have a similar lack of explicit

time-dependence.)

b) Describe in words what is going on in the system, in terms of rabbits and foxes.

2

Exercise 8.3: The Lorenz equations

One of the most celebrated sets of differential equations in physics is the Lorenz equations:

dx

dt
= σ(y− x),

dy

dt
= rx− y− xz,

dz

dt
= xy− bz,

where σ, r, and b are constants. (The names σ, r, and b are odd, but traditional—they are always

used in these equations for historical reasons.)

These equations were first studied by Edward Lorenz in 1963, who derived them from a

simplified model of weather patterns. The reason for their fame is that they were one of the

first incontrovertible examples of deterministic chaos, the occurrence of apparently random mo-

tion even though there is no randomness built into the equations. We encountered a different

example of chaos in the logistic map of Exercise 3.6.

a) Write a program to solve the Lorenz equations for the case σ = 10, r = 28, and b = 8
3

in the range from t = 0 to t = 50 with initial conditions (x, y, z) = (0, 1, 0). Have your

program make a plot of y as a function of time. Note the unpredictable nature of the

motion. (Hint: If you base your program on previous ones, be careful. This problem has

parameters r and b with the same names as variables in previous programs—make sure

to give your variables new names, or use different names for the parameters, to avoid

introducing errors into your code.)

b) Modify your program to produce a plot of z against x. You should see a picture of the

famous “strange attractor” of the Lorenz equations, a lop-sided butterfly-shaped plot that

never repeats itself.

Exercise 8.4: Building on the results from Example 8.6 above, calculate the motion of a nonlin-

ear pendulum as follows.

a) Write a program to solve the two first-order equations, Eqs. (8.45) and (8.46), using the

fourth-order Runge–Kutta method for a pendulum with a 10 cm arm. Use your program

to calculate the angle θ of displacement for several periods of the pendulum when it is

released from a standstill at θ = 179◦ from the vertical. Make a graph of θ as a function

of time.

b) Extend your program to create an animation of the motion of the pendulum. Your an-

imation should, at a minimum, include a representation of the moving pendulum bob

and the pendulum arm. (Hint: You will probably find the function rate discussed in Sec-

tion 3.5 useful for making your animation run at a sensible speed. Also, you may want

to make the step size for your Runge–Kutta calculation smaller than the frame-rate of

your animation, i.e., do several Runge–Kutta steps per frame on screen. This is certainly

allowed and may help to make your calculation more accurate.)

For a bigger challenge, take a look at Exercise 8.15 on page 398, which invites you to write a

program to calculate the chaotic motion of the double pendulum.

3

Exercise 8.5: The driven pendulum

A pendulum like the one in Exercise 8.4 can be driven by, for example, exerting a small oscil-

lating force horizontally on the mass. Then the equation of motion for the pendulum becomes

d2θ

dt2
= −g

ℓ
sin θ + C cos θ sin Ωt,

where C and Ω are constants.

a) Write a program to solve this equation for θ as a function of time with ℓ = 10 cm, C =
2 s−2 and Ω = 5 s−1 and make a plot of θ as a function of time from t = 0 to t = 100 s.

Start the pendulum at rest with θ = 0 and dθ/dt = 0.

b) Now change the value of Ω, while keeping C the same, to find a value for which the

pendulum resonates with the driving force and swings widely from side to side. Make a

plot for this case also.

Exercise 8.6: Harmonic and anharmonic oscillators

The simple harmonic oscillator arises in many physical problems, in mechanics, electricity and

magnetism, and condensed matter physics, among other areas. Consider the standard oscilla-

tor equation
d2x

dt2
= −ω2x.

a) Using the methods described in the preceding section, turn this second-order equation

into two coupled first-order equations. Then write a program to solve them for the case

ω = 1 in the range from t = 0 to t = 50. A second-order equation requires two initial

conditions, one on x and one on its derivative. For this problem use x = 1 and dx/dt = 0

as initial conditions. Have your program make a graph showing the value of x as a

function of time.

b) Now increase the amplitude of the oscillations by making the initial value of x bigger—

say x = 2—and confirm that the period of the oscillations stays roughly the same.

c) Modify your program to solve for the motion of the anharmonic oscillator described by

the equation
d2x

dt2
= −ω2x3.

Again take ω = 1 and initial conditions x = 1 and dx/dt = 0 and make a plot of the

motion of the oscillator. Again increase the amplitude. You should observe that the oscil-

lator oscillates faster at higher amplitudes. (You can try lower amplitudes too if you like,

which should be slower.) The variation of frequency with amplitude in an anharmonic

oscillator was studied previously in Exercise 5.10.

d) Modify your program so that instead of plotting x against t, it plots dx/dt against x,

i.e., the “velocity” of the oscillator against its “position.” Such a plot is called a phase space

plot.

4

e) The van der Pol oscillator, which appears in electronic circuits and in laser physics, is de-

scribed by the equation
d2x

dt2
− µ(1 − x2)

dx

dt
+ ω2x = 0.

Modify your program to solve this equation from t = 0 to t = 20 and hence make a phase

space plot for the van der Pol oscillator with ω = 1, µ = 1, and initial conditions x = 1

and dx/dt = 0. Try it also for µ = 2 and µ = 4 (still with ω = 1). Make sure you use a

small enough value of the time interval h to get a smooth, accurate phase space plot.

Exercise 8.7: Trajectory with air resistance

Many elementary mechanics problems deal with the physics of objects moving or flying through

the air, but they almost always ignore friction and air resistance to make the equations solvable.

If we’re using a computer, however, we don’t need solvable equations.

Consider, for instance, a spherical cannonball shot from a cannon standing on level ground.

The air resistance on a moving sphere is a force in the opposite direction to the motion with

magnitude

F = 1
2 πR2ρCv2,

where R is the sphere’s radius, ρ is the density of air, v is the velocity, and C is the so-called

coefficient of drag (a property of the shape of the moving object, in this case a sphere).

a) Starting from Newton’s second law, F = ma, show that the equations of motion for the

position (x, y) of the cannonball are

ẍ = −πR2ρC

2m
ẋ
√

ẋ2 + ẏ2, ÿ = −g− πR2ρC

2m
ẏ
√

ẋ2 + ẏ2,

where m is the mass of the cannonball, g is the acceleration due to gravity, and ẋ and ẍ

are the first and second derivatives of x with respect to time.

b) Change these two second-order equations into four first-order equations using the meth-

ods you have learned, then write a program that solves the equations for a cannonball

of mass 1 kg and radius 8 cm, shot at 30◦ to the horizontal with initial velocity 100 ms−1.

The density of air is ρ = 1.22 kg m−3 and the coefficient of drag for a sphere is C = 0.47.

Make a plot of the trajectory of the cannonball (i.e., a graph of y as a function of x).

c) When one ignores air resistance, the distance traveled by a projectile does not depend on

the mass of the projectile. In real life, however, mass certainly does make a difference.

Use your program to estimate the total distance traveled (over horizontal ground) by

the cannonball above, and then experiment with the program to determine whether the

cannonball travels further if it is heavier or lighter. You could, for instance, plot a series

of trajectories for cannonballs of different masses, or you could make a graph of distance

traveled as a function of mass. Describe briefly what you discover.

Exercise 8.8: Space garbage

A heavy steel rod and a spherical ball-bearing, discarded by a passing spaceship, are floating in

zero gravity and the ball bearing is orbiting around the rod under the effect of its gravitational

pull:

5

Ball bearing

Rod

For simplicity we’ll assume that the rod is of negligible cross-section and heavy enough that it

doesn’t move significantly, and that the ball bearing is orbiting around the rod’s mid-point in

a plane perpendicular to the rod.

a) Treating the rod as a line of mass M and length L and the ball bearing as a point mass m,

show that the attractive force F felt by the ball bearing in the direction toward the center

of the rod is given by

F =
GMm

L

√

x2 + y2

∫ L/2

−L/2

dz

(x2 + y2 + z2)3/2
,

where G is Newton’s gravitational constant and x and y are the coordinates of the ball

bearing in the plane perpendicular to the rod. The integral can be done in closed form

and gives

F =
GMm

√

(x2 + y2)(x2 + y2 + L2/4)
.

Hence show that the equations of motion for the position x, y of the ball bearing in the

xy-plane are

d2x

dt2
= −GM

x

r2
√
r2 + L2/4

,
d2y

dt2
= −GM

y

r2
√
r2 + L2/4

,

where r =
√

x2 + y2.

b) Convert these two second-order equations into four first-order ones using the techniques

of Section 8.3. Then, working in units where G = 1, write a program to solve them for

M = 10, L = 2, and initial conditions (x, y) = (1, 0) with velocity of +1 in the y direction.

Calculate the orbit from t = 0 to t = 10 and make a plot of it, meaning a plot of y against x.

You should find that the ball bearing does not orbit in a circle or ellipse as a planet does,

but has a precessing orbit, which arises because the attractive force is not a simple 1/r2

force as it is for a planet orbiting the Sun.

Exercise 8.9: Vibration in a one-dimensional system

In Example 6.2 on page 235 we studied the motion of a system of N identical masses (in zero

gravity) joined by identical linear springs like this:

6

As we showed, the horizontal displacements ξi of masses i = 1 . . . N satisfy equations of mo-

tion

m
d2ξ1

dt2
= k(ξ2 − ξ1) + F1,

m
d2ξi
dt2

= k(ξi+1 − ξi) + k(ξi−1 − ξi) + Fi ,

m
d2ξN
dt2

= k(ξN−1 − ξN) + FN.

where m is the mass, k is the spring constant, and Fi is the external force on mass i. In Exam-

ple 6.2 we showed how these equations could be solved by guessing a form for the solution

and using a matrix method. Here we’ll solve them more directly.

a) Write a program to solve for the motion of the masses using the fourth-order Runge–

Kutta method for the case we studied previously where m = 1 and k = 6, and the driving

forces are all zero except for F1 = cos ωt with ω = 2. Plot your solutions for the displace-

ments ξi of all the masses as a function of time from t = 0 to t = 20 on the same plot.

Write your program to work with general N, but test it out for small values—N = 5 is a

reasonable choice.

You will need first of all to convert the N second-order equations of motion into 2N first-

order equations. Then combine all of the dependent variables in those equations into a

single large vector r to which you can apply the Runge–Kutta method in the standard

fashion.

b) Modify your program to create an animation of the movement of the masses, represented

as spheres on the computer screen. You will probably find the rate function discussed in

Section 3.5 useful for making your animation run at a sensible speed.

Exercise 8.10: Cometary orbits

Many comets travel in highly elongated orbits around the Sun. For much of their lives they are

far out in the solar system, moving very slowly, but on rare occasions their orbit brings them

close to the Sun for a fly-by and for a brief period of time they move very fast indeed:

Sun

Comet

slow herefast here

7

This is a classic example of a system for which an adaptive step size method is useful, because

for the large periods of time when the comet is moving slowly we can use long time-steps,

so that the program runs quickly, but short time-steps are crucial in the brief but fast-moving

period close to the Sun.

The differential equation obeyed by a comet is straightforward to derive. The force between

the Sun, with mass M at the origin, and a comet of mass m with position vector r is GMm/r2

in direction −r/r (i.e., the direction towards the Sun), and hence Newton’s second law tells us

that

m
d2r

dt2
= −

(

GMm

r2

)

r

r
.

Canceling the m and taking the x component we have

d2x

dt2
= −GM

x

r3
,

and similarly for the other two coordinates. We can, however, throw out one of the coordinates

because the comet stays in a single plane as it orbits. If we orient our axes so that this plane is

perpendicular to the z-axis, we can forget about the z coordinate and we are left with just two

second-order equations to solve:

d2x

dt2
= −GM

x

r3
,

d2y

dt2
= −GM

y

r3
,

where r =
√

x2 + y2.

a) Turn these two second-order equations into four first-order equations, using the methods

you have learned.

b) Write a program to solve your equations using the fourth-order Runge–Kutta method

with a fixed step size. You will need to look up the mass of the Sun and Newton’s grav-

itational constant G. As an initial condition, take a comet at coordinates x = 4 billion

kilometers and y = 0 (which is somewhere out around the orbit of Neptune) with initial

velocity vx = 0 and vy = 500 m s−1. Make a graph showing the trajectory of the comet

(i.e., a plot of y against x).

Choose a fixed step size h that allows you to accurately calculate at least two full orbits

of the comet. Since orbits are periodic, a good indicator of an accurate calculation is that

successive orbits of the comet lie on top of one another on your plot. If they do not then

you need a smaller value of h. Give a short description of your findings. What value of

h did you use? What did you observe in your simulation? How long did the calculation

take?

c) Make a copy of your program and modify the copy to do the calculation using an adap-

tive step size. Set a target accuracy of δ = 1 kilometer per year in the position of the

comet and again plot the trajectory. What do you see? How do the speed, accuracy, and

step size of the calculation compare with those in part (b)?

d) Modify your program to place dots on your graph showing the position of the comet

at each Runge–Kutta step around a single orbit. You should see the steps getting closer

8

together when the comet is close to the Sun and further apart when it is far out in the

solar system.

Calculations like this can be extended to cases where we have more than one orbiting

body—see Exercise 8.16 for an example. We can include planets, moons, asteroids, and oth-

ers. Analytic calculations are impossible for such complex systems, but with careful numerical

solution of differential equations we can calculate the motions of objects throughout the entire

solar system.

Exercise 8.11: Write a program to solve the differential equation

d2x

dt2
−

(

dx

dt

)2

+ x + 5 = 0

using the leapfrog method. Solve from t = 0 to t = 50 in steps of h = 0.001 with initial

condition x = 1 and dx/dt = 0. Make a plot of your solution showing x as a function of t.

Exercise 8.12: Orbit of the Earth

Use the Verlet method to calculate the orbit of the Earth around the Sun. The equations of

motion for the position r = (x, y) of the planet in its orbital plane are the same as those for any

orbiting body and are derived in Exercise 8.10 on page 361. In vector form, they are

d2r

dt2
= −GM

r

r3
,

where G = 6.6738 × 10−11 m3 kg−1 s−2 is Newton’s gravitational constant and M = 1.9891 ×
1030 kg is the mass of the Sun.

The orbit of the Earth is not perfectly circular, the planet being sometimes closer to and

sometimes further from the Sun. When it is at its closest point, or perihelion, it is moving

precisely tangentially (i.e., perpendicular to the line between itself and the Sun) and it has

distance 1.4710 × 1011 m from the Sun and linear velocity 3.0287 × 104 m s−1.

a) Write a program to calculate the orbit of the Earth using the Verlet method, Eqs. (8.77)

and (8.78), with a time-step of h = 1 hour. Make a plot of the orbit, showing several

complete revolutions about the Sun. The orbit should be very slightly, but visibly, non-

circular.

b) The gravitational potential energy of the Earth is −GMm/r, where m = 5.9722 × 1024 kg

is the mass of the planet, and its kinetic energy is 1
2mv2 as usual. Modify your program

to calculate both of these quantities at each step, along with their sum (which is the total

energy), and make a plot showing all three as a function of time on the same axes. You

should find that the potential and kinetic energies vary visibly during the course of an

orbit, but the total energy remains constant.

c) Now plot the total energy alone without the others and you should be able to see a slight

variation over the course of an orbit. Because you’re using the Verlet method, however,

which conserves energy in the long term, the energy should always return to its starting

value at the end of each complete orbit.

9

Exercise 8.13: Planetary orbits

This exercise asks you to calculate the orbits of two of the planets using the Bulirsch–Stoer

method. The method gives results significantly more accurate than the Verlet method used to

calculate the Earth’s orbit in Exercise 8.12.

The equations of motion for the position x, y of a planet in its orbital plane are the same as

those for any orbiting body and are derived in Exercise 8.10 on page 361:

d2x

dt2
= −GM

x

r3
,

d2y

dt2
= −GM

y

r3
,

where G = 6.6738 × 10−11 m3 kg−1 s−2 is Newton’s gravitational constant, M = 1.9891 ×
1030 kg is the mass of the Sun, and r =

√

x2 + y2.

Let us first solve these equations for the orbit of the Earth, duplicating the results of Exer-

cise 8.12, though with greater accuracy. The Earth’s orbit is not perfectly circular, but rather

slightly elliptical. When it is at its closest approach to the Sun, its perihelion, it is moving pre-

cisely tangentially (i.e., perpendicular to the line between itself and the Sun) and it has distance

1.4710 × 1011 m from the Sun and linear velocity 3.0287 × 104 ms−1.

a) Write a program, or modify the one from Example 8.7, to calculate the orbit of the Earth

using the Bulirsch–Stoer method to a positional accuracy of 1 km per year. Divide the

orbit into intervals of length H = 1 week and then calculate the solution for each interval

using the combined modified midpoint/Richardson extrapolation method described in

this section. Make a plot of the orbit, showing at least one complete revolution about the

Sun.

b) Modify your program to calculate the orbit of the dwarf planet Pluto. The distance

between the Sun and Pluto at perihelion is 4.4368 × 1012 m and the linear velocity is

6.1218 × 103 ms−1. Choose a suitable value for H to make your calculation run in rea-

sonable time, while once again giving a solution accurate to 1 km per year.

You should find that the orbit of Pluto is significantly elliptical—much more so than the

orbit of the Earth. Pluto is a Kuiper belt object, similar to a comet, and (unlike true plan-

ets) it’s typical for such objects to have quite elliptical orbits.

Exercise 8.14: Quantum oscillators

Consider the one-dimensional, time-independent Schrödinger equation in a harmonic (i.e.,

quadratic) potential V(x) = V0x
2/a2, where V0 and a are constants.

a) Write down the Schrödinger equation for this problem and convert it from a second-

order equation to two first-order ones, as in Example 8.9. Write a program, or modify the

one from Example 8.9, to find the energies of the ground state and the first two excited

states for these equations when m is the electron mass, V0 = 50 eV, and a = 10−11 m.

Note that in theory the wavefunction goes all the way out to x = ±∞, but you can get

good answers by using a large but finite interval. Try using x = −10a to +10a, with

the wavefunction ψ = 0 at both boundaries. (In effect, you are putting the harmonic

10

oscillator in a box with impenetrable walls.) The wavefunction is real everywhere, so

you don’t need to use complex variables, and you can use evenly spaced points for the

solution—there is no need to use an adaptive method for this problem.

The quantum harmonic oscillator is known to have energy states that are equally spaced.

Check that this is true, to the precision of your calculation, for your answers. (Hint: The

ground state has energy in the range 100 to 200 eV.)

b) Now modify your program to calculate the same three energies for the anharmonic oscil-

lator with V(x) = V0x
4/a4, with the same parameter values.

c) Modify your program further to calculate the properly normalized wavefunctions of the

anharmonic oscillator for the three states and make a plot of them, all on the same axes,

as a function of x over a modest range near the origin—say x = −5a to x = 5a.

To normalize the wavefunctions you will have to evaluate the integral
∫

∞

−∞
|ψ(x)|2 dx and

then rescale ψ appropriately to ensure that the area under the square of each of the wave-

functions is 1. Either the trapezoidal rule or Simpson’s rule will give you a reasonable

value for the integral. Note, however, that you may find a few very large values at the

end of the array holding the wavefunction. Where do these large values come from? Are

they real, or spurious?

One simple way to deal with the large values is to make use of the fact that the system

is symmetric about its midpoint and calculate the integral of the wavefunction over only

the left-hand half of the system, then double the result. This neatly misses out the large

values.

Exercise 8.15: The double pendulum

If you did Exercise 8.4 you will have created a program to calculate the movement of a nonlin-

ear pendulum. Although it is nonlinear, the nonlinear pendulum’s movement is nonetheless

perfectly regular and periodic—there are no surprises. A double pendulum, on the other hand, is

completely the opposite—chaotic and unpredictable. A double pendulum consists of a normal

pendulum with another pendulum hanging from its end. For simplicity let us ignore friction,

and assume that both pendulums have bobs of the same mass m and massless arms of the same

length ℓ. Thus the setup looks like this:

θ1

θ2

m

Pivot

m

11

The position of the arms at any moment in time is uniquely specified by the two angles θ1

and θ2. The equations of motion for the angles are most easily derived using the Lagrangian

formalism, as follows.

The heights of the two bobs, measured from the level of the pivot are

h1 = −ℓ cos θ1, h2 = −ℓ(cos θ1 + cos θ2),

so the potential energy of the system is

V = mgh1 + mgh2 = −mgℓ(2 cos θ1 + cos θ2),

where g is the acceleration due to gravity. The (linear) velocities of the two bobs are given by

v1 = ℓθ̇1, v2
2 = ℓ

2
[

θ̇2
1 + θ̇2

2 + 2θ̇1θ̇2 cos(θ1 − θ2)
]

,

where θ̇ means the derivative of θ with respect to time t. (If you don’t see where the second

velocity equation comes from, it’s a good exercise to derive it for yourself from the geometry

of the pendulum.) Now the total kinetic energy is

T = 1
2mv2

1 + 1
2mv2

2 = mℓ
2
[

θ̇2
1 + 1

2 θ̇2
2 + θ̇1θ̇2 cos(θ1 − θ2)

]

,

and the Lagrangian of the system is

L = T −V = mℓ
2
[

θ̇2
1 + 1

2 θ̇2
2 + θ̇1θ̇2 cos(θ1 − θ2)

]

+ mgℓ(2 cos θ1 + cos θ2).

Then the equations of motion are given by the Euler–Lagrange equations

d

dt

(

∂L

∂θ̇1

)

=
∂L

∂θ1
,

d

dt

(

∂L

∂θ̇2

)

=
∂L

∂θ2
,

which in this case give

2θ̈1 + θ̈2 cos(θ1 − θ2) + θ̇2
2 sin(θ1 − θ2) + 2

g

ℓ
sin θ1 = 0,

θ̈2 + θ̈1 cos(θ1 − θ2) − θ̇2
1 sin(θ1 − θ2) +

g

ℓ
sin θ2 = 0,

where the mass m has canceled out.

These are second-order equations, but we can convert them into first-order ones by the

usual method, defining two new variables, ω1 and ω2, thus:

θ̇1 = ω1, θ̇2 = ω2.

In terms of these variables our equations of motion become

2ω̇1 + ω̇2 cos(θ1 − θ2) + ω2
2 sin(θ1 − θ2) + 2

g

ℓ
sin θ1 = 0,

ω̇2 + ω̇1 cos(θ1 − θ2) − ω2
1 sin(θ1 − θ2) +

g

ℓ
sin θ2 = 0.

12

Finally we have to rearrange these into the standard form of Eq. (8.29) with a single derivative

on the left-hand side of each one, which gives

ω̇1 = −ω2
1 sin(2θ1 − 2θ2) + 2ω2

2 sin(θ1 − θ2) + (g/ℓ)
[

sin(θ1 − 2θ2) + 3 sin θ1

]

3 − cos(2θ1 − 2θ2)
,

ω̇2 =
4ω2

1 sin(θ1 − θ2) + ω2
2 sin(2θ1 − 2θ2) + 2(g/ℓ)

[

sin(2θ1 − θ2) − sin θ2

]

3 − cos(2θ1 − 2θ2)
.

(This last step is quite tricky and involves some trigonometric identities. If you’re not certain

of how the calculation goes you may find it useful to go through the derivation for yourself.)

These two equations, along with the equations θ̇1 = ω1 and θ̇2 = ω2, give us four first-order

equations which between them define the motion of the double pendulum.

a) Derive an expression for the total energy E = T+V of the system in terms of the variables

θ1, θ2, ω1, and ω2, plus the constants g, ℓ, and m.

b) Write a program using the fourth-order Runge–Kutta method to solve the equations of

motion for the case where ℓ = 40 cm, with the initial conditions θ1 = θ2 = 90◦ and

ω1 = ω2 = 0. Use your program to calculate the total energy of the system assuming that

the mass of the bobs is 1 kg each, and make a graph of energy as a function of time from

t = 0 to t = 100 seconds.

Because of energy conservation, the total energy should be constant over time (actually it

should be zero for this particular set of initial conditions), but you will find that it is not

perfectly constant because of the approximate nature of the solution of the differential

equation. Choose a suitable value of the step size h to ensure that the variation in energy

is less than 10−5 Joules over the course of the calculation.

c) Make a copy of your program and modify the copy to create a second program that

does not produce a graph, but instead makes an animation of the motion of the double

pendulum over time. At a minimum, the animation should show the two arms and the

two bobs.

Hint: As in Exercise 8.4 you will probably find the function rate useful in order to make

your program run at a steady speed. You will probably also find that the value of h

needed to get the required accuracy in your solution gives a frame-rate much faster than

any that can reasonably be displayed in your animation, so you won’t be able to display

every time-step of the calculation in the animation. Instead you will have to arrange the

program so that it updates the animation only once every several Runge–Kutta steps.

Exercise 8.16: The three-body problem

If you mastered Exercise 8.10 on cometary orbits, here’s a more challenging problem in celestial

mechanics—and a classic in the field—the three-body problem.

Three stars, in otherwise empty space, are initially at rest, with the following masses and

positions, in arbitrary units:

13

Mass x y

Star 1 150 3 1

Star 2 200 −1 −2

Star 3 250 −1 1

(All the z coordinates are zero, so the three stars lie in the xy plane.)

a) Show that the equation of motion governing the position r1 of the first star is

d2r1

dt2
= Gm2

r2 − r1

|r2 − r1|3
+ Gm3

r3 − r1

|r3 − r1|3
and derive two similar equations for the positions r2 and r3 of the other two stars. Then

convert the three second-order equations into six equivalent first-order equations, using

the techniques you have learned.

b) Working in units where G = 1, write a program to solve your equations and hence calcu-

late the motion of the stars from t = 0 to t = 2. Make a plot showing the trails of all three

stars (i.e., a graph of y against x for each star).

c) Modify your program to make an animation of the motion on the screen from t = 0 to

t = 10. You may wish to make the three stars different sizes or colors (or both) so that

you can tell which is which.

To do this calculation properly you will need to use an adaptive step size method, for the same

reasons as in Exercise 8.10—the stars move very rapidly when they are close together and very

slowly when they are far apart. An adaptive method is the only way to get the accuracy you

need in the fast-moving parts of the motion without wasting hours uselessly calculating the

slow parts with a tiny step size. Construct your program so that it introduces an error of no

more than 10−3 in the position of any star per unit time.

Creating an animation with an adaptive step size can be challenging, since the steps do not

all correspond to the same amount of real time. The simplest thing to do is just to ignore the

varying step sizes and make an animation as if they were all equal, updating the positions of

the stars on the screen at every step or every several steps. This will give you a reasonable

visualization of the motion, but it will look a little odd because the stars will slow down, rather

than speed up, as they come close together, because the adaptive calculation will automatically

take more steps in this region.

A better solution is to vary the frame-rate of your animation so that the frames run pro-

portionally faster when h is smaller, meaning that the frame-rate needs to be equal to C/h for

some constant C. You can achieve this by using the rate function from the visual package to

set a different frame-rate on each step, equal to C/h. If you do this, it’s a good idea to not let

the value of h grow too large, or the animation will make some large jumps that look uneven

on the screen. Insert extra program lines to ensure that h never exceeds a value hmax that you

choose. Values for the constants of around C = 0.1 and hmax = 10−3 seem to give reasonable

results.

Exercise 8.17: Cometary orbits and the Bulirsch–Stoer method

Repeat the calculation of the cometary orbit in Exercise 8.10 (page 361) using the adaptive

Bulirsch–Stoer method of Section 8.5.6 to calculate a solution accurate to δ = 1 kilometer per

14

year in the position of the comet. Calculate the solution from t = 0 to t = 2 × 109 s, initially

using just a single time interval of size H = 2 × 109 s and allowing a maximum of n = 8

modified midpoint steps before dividing the interval in half and trying again. Then these

intervals may be subdivided again, as described in Section 8.5.6, as many times as necessary

until the method converges in eight steps or less in each interval.

Make a plot of the orbit (i.e., a plot of y against x) and have your program add dots to the

trajectory to show where the ends of the time intervals lie. You should see the time intervals

getting shorter in the part of the trajectory close to the Sun, where the comet is moving rapidly.

Hint: The simplest way to do this calculation is to make use of recursion, the ability of a

Python function to call itself. (If you’re not familiar with the idea of recursion you might like to

look at Exercise 2.13 on page 83 before doing this exercise.) Write a user-defined function called,

say, step(r,t,H) that takes as arguments the position vector r = (x, y) at a starting time t and

an interval length H, and returns the new value of r at time t+H. This function should perform

the modified midpoint/Richardson extrapolation calculation described in Section 8.5.5 until

either the calculation converges to the required accuracy or you reach the maximum number

n = 8 of modified midpoint steps. If it fails to converge in eight steps, have your function call

itself, twice, to calculate separately the solution for the first then the second half of the interval

from t to t + H, something like this:

r1 = step(r,t,H/2)

r2 = step(r1,t+H/2,H/2)

(Then these functions can call themselves, and so forth, subdividing the interval as many times

as necessary to reach the required accuracy.)

Exercise 8.18: Oscillating chemical reactions

The Belousov–Zhabotinsky reaction is a chemical oscillator, a cocktail of chemicals which, when

heated, undergoes a series of reactions that cause the chemical concentrations in the mixture to

oscillate between two extremes. You can add an indicator dye to the reaction which changes

color depending on the concentrations and watch the mixture switch back and forth between

two different colors for as long as you go on heating the mixture.

Physicist Ilya Prigogine formulated a mathematical model of this type of chemical oscilla-

tor, which he called the “Brusselator” after his home town of Brussels. The equations for the

Brusselator are
dx

dt
= 1 − (b + 1)x + ax2y,

dy

dt
= bx− ax2y.

Here x and y represent concentrations of chemicals and a and b are positive constants.

Write a program to solve these equations for the case a = 1, b = 3 with initial conditions

x = y = 0, to an accuracy of at least δ = 10−10 per unit time in both x and y, using the adaptive

Bulirsch–Stoer method described in Section 8.5.6. Calculate a solution from t = 0 to t = 20,

initially using a single time interval of size H = 20. Allow a maximum of n = 8 modified

midpoint steps in an interval before you divide in half and try again.

Make a plot of your solutions for x and y as a function of time, both on the same graph, and

have your program add dots to the curves to show where the boundaries of the time intervals

15

lie. You should find that the points are significantly closer together in parts of the solution

where the variables are changing rapidly.

Hint: The simplest way to perform the calculation is to make use of recursion, as described

in Exercise 8.17.

16

