Physics 390: Homework 1

For full credit, show all your working.

1. Problem 3-8 from Tipler & Llewellyn.

2. Planck’s law: As we saw in class, the average energy of a mode in Planck’s quantized theory of the radiation in a cavity is given by

\[\bar{E} = \frac{h f \sum_{n=0}^{\infty} n e^{-nhf/kT}}{\sum_{n=0}^{\infty} e^{-nhf/kT}}. \]

(a) Calculate the value of the sum in the denominator by rewriting it as a geometric series \(\sum_{n=0}^{\infty} a^n \) for some value of \(a \) (to be determined) and then performing the sum using the standard formula for a geometric series.

(b) Show that

\[-\frac{kT}{h} \frac{\partial}{\partial f} \sum_{n=0}^{\infty} e^{-nhf/kT} = \sum_{n=0}^{\infty} ne^{-nhf/kT}. \]

Hence, using the answer to part (a), show that

\[\sum_{n=0}^{\infty} ne^{-nhf/kT} = \frac{e^{hf/kT}}{(e^{hf/kT} - 1)^2}. \]

(c) Hence derive Planck’s expression for \(\bar{E} \), Eq. (3-17) in the book.

3. Wien’s law: Given Planck’s radiation law,

\[u(\lambda) = \frac{8\pi hc}{e^{hc/\lambda kT} - 1}, \]

we can derive Wien’s law.

(a) Differentiate to show that the wavelength of maximum radiation \(\lambda_m \) depends on temperature as \(\lambda_m = \frac{b}{T} \) for some constant \(b \).

(b) Find the constant \(b \) to two significant figures and state its units. You will probably need to know that the solution to the equation \(5e^{-x} + x = 5 \) is 4.965…

4. Problem 3-15 from Tipler & Llewellyn, parts (a) and (c) only.

5. Problem 3-45 from Tipler & Llewellyn.