Physics 406: Homework 4

1. Combinatorics: A famous carnival toy is a machine that drops a large number of marbles at the top of a pyramid of nails tacked to a board like this:

The marbles fall down and at each step have a 50% chance of going right or left. At the bottom they fall into a set of bins as shown. If there are \(N \) rows of nails total, it’s pretty easy to convince yourself that there must be \(N + 1 \) bins.

(a) Write down an expression for the number of paths \(g(N, l, r) \) that a marble can take that make a total of \(l \) steps to the left and \(r \) steps to the right. Eliminate \(l \) and \(r \) in favor of the distance \(x = r - l \) traveled to the right to get the same number in terms of \(N \) and \(x \) only. (Note that the distance \(x \) is measured horizontally from where the marbles start, i.e., from a line down the middle of the picture above.)

(b) If \(N = 10 \), how many ways are there of traveling distance \(x = 10 \) to the right? How many ways are there of traveling distance zero?

(c) If \(N = 10 \), about how many marbles will have to be dropped before even a single one of them goes all the way to the right-most bin? And how many if \(N = 20 \)?

(d) When many marbles are dropped, what is the expected mean distance \(\langle x \rangle \) traveled, averaged over all of them? And what is the standard deviation of the distance?

(e) So if you had to say where a single marble dropped would land, between about which values of \(x \) would you feel reasonably confident saying it would end up, if \(N = 100 \)? (If you want to be really precise, you could say which values would you have 90% confidence it would land between, but any sensible answer will do for this question. Saying that \(x \) lies between \(-100 \) and 100 is not a good answer!)

2. Entropy of a set of harmonic oscillators: The quantum simple harmonic oscillator is a quantum system with equally spaced energy levels \(\varepsilon = sh\omega \), where \(h \) and \(\omega \) are constants and \(s \) is a non-negative integer. If we have \(N \) identical such oscillators, their total combined energy can take values \(U = nsh\omega \), where \(n \) is another non-negative integer. In your course pack it is shown that the multiplicity of the state with energy \(nsh\omega \) is given by the binomial coefficient (or combination)

\[
g(N, n) = \binom{N - 1 + n}{N - 1}.
\]
(a) Write \(g(N, n) \) in a form involving factorials and hence write down the dimensionless entropy \(\sigma \) of the system when in thermal isolation.

(b) When \(N \) is large we can, to a good approximation, replace \(N - 1 \) by \(N \). Do this for your expression.
A result which we will use a lot in this course is Sterling’s approximation for the logarithm of a factorial, which says that

\[
\ln n! \simeq n \ln n - n,
\]

where the approximation becomes better and better as \(n \to \infty \). We will see how to prove this result in a later lecture. For the moment we just assume it. (If you want to see the proof, it’s given in Appendix A of Kittel and Kroemer.) Apply Sterling’s approximation to your expression for \(G(N, n) \) and derive an approximate expression for \(\sigma \) for large \(N \).

(c) Recalling the definition of the temperature \(\tau \) in energy units, \(\tau = \partial U / \partial \sigma \), differentiate to get an expression for \(\tau \) in terms of the internal energy. (You have to consider \(n \) to be a continuous variable to do this calculation, which is strictly speaking not correct—it is an integer. Later in the course we’ll see a better derivation of this result that doesn’t require us to do this fix.)

(d) Rearrange to show that

\[
U = \frac{N \hbar \omega}{\exp(\hbar \omega / \tau) - 1}.
\]

This is the internal energy of a set of \(N \) harmonic oscillators and, as we will show, is also the correct expression for the energy of a set of bosons (e.g., photons) in a quantum gas. From this expression we will later derive the famous black-body radiation spectrum of Rayleigh and Planck.

(e) What is the heat capacity of the system?

3. **Partition function of a simple system:** Suppose a simple system has states with three energies, \(-\epsilon, 0, \) and \(+\epsilon\). The multiplicities of the states are \(g(-\epsilon) = 1, g(0) = 2, \) and \(g(\epsilon) = 1 \). The system is put in contact with a thermal reservoir at temperature \(\tau \) (in energy units) and allowed to come to equilibrium.

(a) Calculate the partition function \(Z \) of the system.

(b) Calculate the average internal energy of the system as a function of temperature.

(c) Show that the heat capacity is

\[
C = \frac{\epsilon^2}{\tau^2 \left[1 + \cosh(\epsilon / \tau) \right]}.
\]