Two spin systems in contact: A result which we will use a lot in this course is Sterling’s approximation for the logarithm of a factorial, which says that
\[
\ln n! \approx n \ln n - n,
\]
where the approximation becomes better and better as \(n \to \infty \). We will see how to prove this result in a later lecture. For the moment we just assume it. (If you want to see the proof, it’s given in Appendix A of Kittel and Kroemer.)

Now consider the spin system we looked at, composed of \(N \) “spins” that each point either up or down.

(a) Write down an expression for the multiplicity \(g(N, s) \) of states that have a given value of the spin excess parameter \(s \), defined by \(2s = N \uparrow - N \downarrow \). Hence write down an expression for the logarithm of the multiplicity as a function of \(s \).

(b) Apply Sterling’s approximation and show that for large \(N \)
\[
\ln g = N \ln N - (\frac{1}{2}N + s) \ln(\frac{1}{2}N + s) - (\frac{1}{2}N - s) \ln(\frac{1}{2}N - s).
\]

(c) Noting that \(\ln(\frac{1}{2}N + s) = \ln(\frac{1}{2}N) + \ln(1 + 2s/N) \), expand to second order in \(2s/N \) and hence show that
\[
g(N, s) \approx 2^N e^{-2s^2/N}.
\]

This is a Gaussian or normal distribution: the binomial distribution becomes a Gaussian distribution for large \(N \).

(d) Now suppose we have two identical systems of \(N \) spins. Using Eq. (2), write down an expression for the total multiplicity of both systems together as a function of the spin excesses \(s_1 \) and \(s_2 \) of the two systems, assuming for the moment that the two systems are not in contact with one another. (To make the calculations easier, you can assume \(N \) is even.) Eliminate \(s_2 \) in favor of the total spin excess \(s = s_1 + s_2 \) and, by completing the square, show that for a given value of \(s \) the distribution of possible values of \(s_1 \) is Gaussian.

(e) Now suppose that both systems are in a magnetic field of intensity \(B \), so that they have energies \(U_1 = -2mBs_1 \) and \(U_2 = -2mBs_2 \), where \(m \) is the dipole moment of each spin. If the two systems are now in contact with one another, so that energy can flow between them, then \(s_1 \) and \(s_2 \) are no longer fixed, but the total energy must be conserved, so \(s = s_1 + s_2 \) is constant. What is the most likely value of \(s_1 \)?

2. Entropy of a set of harmonic oscillators: Consider the ensemble that we discussed earlier of \(N \) quantum harmonic oscillators. Each can have energy \(\epsilon_s = s\hbar\omega \), where \(\hbar \) and \(\omega \) are constants and \(s \) is a non-negative integer. As we showed in class, the multiplicity \(g(N, n) \) of states of the entire ensemble that have total internal energy \(U = n\hbar\omega \) is given by
\[
g(N, n) = \binom{N - 1 + n}{N - 1}.
\]

(a) Write \(g(N, n) \) in a form involving factorials and hence write down the dimensionless entropy \(\sigma \) of the system.
(b) When N is large we can, to a good approximation, replace $N - 1$ by N. Apply Sterling’s approximation and derive an approximate expression for σ for large N.

(c) Recalling the definition of the temperature τ in energy units, $\tau = \partial U / \partial \sigma$, differentiate to get an expression for τ in terms of the internal energy. (You have to consider n to be a continuous variable to do this calculation, which is strictly speaking not correct—it is an integer. Later in the course we’ll see a better derivation of this result that doesn’t require us to do this kludge.)

(d) Rearrange to show that

$$U = \frac{N\hbar \omega}{\exp(h\omega/\tau) - 1}.$$

This is the internal energy of a set of N harmonic oscillators and, as we will show, is also the correct expression for the energy of a set of bosons (e.g., photons) in a quantum gas. From this expression we will later derive the famous black-body radiation spectrum of Rayleigh and Planck.

(e) What is the heat capacity of the system?

3. **Partition function of a simple system:** Suppose a simple system has states with three energies, $-\epsilon$, 0, and $+\epsilon$. The multiplicities of the states are $g(-\epsilon) = 1$, $g(0) = 2$, and $g(\epsilon) = 1$. The system is put in contact with a thermal reservoir at temperature τ (in energy units) and allowed to come to equilibrium.

(a) Calculate the partition function Z of the system.

(b) Calculate the average internal energy of the system as a function of temperature.

(c) Show that the heat capacity is

$$C = \frac{\epsilon^2}{\tau^2 \left[1 + \cosh(\epsilon/\tau) \right]}.$$