Douglass Houghton Workshop, October 16, 2008
 Proof of angle sum formulas

Julian asked me for a geometric proof of the angle sum formulas:

$$
\begin{aligned}
& \sin (\alpha+\beta)=\sin (\alpha) \cos (\beta)+\cos (\alpha) \sin (\beta) \\
& \cos (\alpha+\beta)=\cos (\alpha) \cos (\beta)-\sin (\alpha) \sin (\beta)
\end{aligned}
$$

The proof below will hopefully convince you that the formulas work when α and β are acute angles (i.e. $0<\alpha, \beta<\frac{\pi}{2}$).

First, draw the angle α the way we normally draw it on the unit circle.

Then rotate the red triangle counterclockwise by the angle β, and draw horizontal and vertical lines to make two new triangles. Note the coordinates of P.

The blue triangle has a vertex angle β and a hypotenuse of length $\cos \alpha$. So we can fill in the lengths of the other sides:

$\cos \alpha \cos \beta$
Likewise the green one:

$\sin \alpha \cos \beta$

Now we can calculate the coordinates of P using the edges of the blue and green triangles, and obtain the identities.

