Douglass Houghton Workshop, Section 2, Thu 02/27/20 Worksheet Karma

With a lot of hard work, we filled the table to the right with the values of $\int_{-\pi}^{\pi} f(x)g(x) dx$, where f is the row and g is the column, and mand n are positive integers.

	1	$\sin(nx)$	$\cos(nx)$		
1	2π	0	0		
$\sin(mx)$	0	$\begin{cases} \pi & \text{if } m = n \\ 0 & \text{otherwise} \end{cases}$	0		
$\cos(mx)$	0	0	$\begin{cases} \pi & \text{if } m = n \\ 0 & \text{otherwise} \end{cases}$		

The implication was that for a function of the form

(1)
$$f(x) = a_0 + a_1 \cos(x) + a_2 \cos(2x) + a_3 \cos(3x) + \cdots + b_1 \sin(x) + b_2 \sin(2x) + b_3 \sin(3x) + \cdots$$

integrating against a sine or cosine function makes almost all the terms 0, so for $n \ge 1$:

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \, dx, \quad a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) \, dx, \quad \text{and} \quad b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) \, dx.$$

Writing a function in the form of Equation (1) is called finding the **Fourier Series** of the function.

- 1. Let's compute the Fourier series for $f(x) = x^2$.
 - (a) Compute a_0 .
 - (b) Fill in the table to the right.
 - (c) Find the a_n and b_n for $f(x) = x^2$.
- 2. Write down the Taylor series about a = 0 for the following functions, either from memory or by working them out.
 - (c) $\cos(x) =$ (a) $e^x =$ (d) $\sin(x) =$
 - (b) $e^{-x} =$

(e)
$$\cosh(x) = \frac{1}{2}(e^x + e^{-x}) =$$

(f)
$$\sinh(x) = \frac{1}{2}(e^x - e^{-x}) =$$

3. (Fall, 2014) Prove whether these series converge or diverge:

(a)
$$\sum_{n=2}^{\infty} \frac{(-1)^n \ln(n)}{n}$$
 (b) $\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^3} + 2}$

4. (Fall, 2007) Find the interval of convergence of $\sum_{n=3}^{\infty} \frac{(3-x)^{3n}}{8^n(n-2)}.$

n	1	2	3	4	5	6
$\sin(n\pi)$						
$\sin(-n\pi)$						
$\cos(n\pi)$						
$\cos(-n\pi)$						