## Douglass Houghton Workshop, Section 2, Tue 02/18/20 Worksheet Hamster

1. Find the probability of winning the pass bet in craps.
2. Let's prove that a series converges.
(a) Draw the graph of $y=1 / x^{2}$ for $x>0$.
(b) Draw some rectangles representing the Right Hand Sum with $\Delta x=1$ for $\int_{1}^{\infty} d x / x^{2}$.
(c) Explain why this proves that $\sum_{n=2}^{\infty} 1 / n^{2}$ converges.
(d) Of course $\sum_{n=1}^{\infty} 1 / n^{2}$ is just one bigger than that last sum, so it converges too. But what does it converge to?
3. Use an argument similar to the last one to prove that $\sum_{n=1}^{\infty} 1 / n$ diverges.
4. ( 6 pts ) (This problem appeared on a Winter, 2003 Math 116 exam) The chambered nautilus builds a spiral sequence of closed chambers. It constructs them from the inside out, with each chamber approximately $20 \%$ larger (by volume) than the last. (The large open section at the top is not a "chamber.") The largest chamber is 9 cubic inches. Show your work on both parts.
(a) How much volume is enclosed by the last 15 chambers constructed?
(b) How much volume is enclosed by all the chambers? Assume for simplicity that there are infinitely many chambers.
5. (This problem appeared on a Winter, 2009 Math 116 exam) The quantity

$$
\int_{1}^{\infty} \frac{d x}{\sqrt{\left(a^{2}+x\right)\left(b^{2}+x\right)\left(c^{2}+x\right)}}
$$

roughly models the resistance that football-shaped plankton encounter when falling through water. Note that $a=1, b=2$, and $c=3$ are constants that describe the dimensions of the plankton. Find a value of $M$ for which

$$
\int_{1}^{M} \frac{d x}{\sqrt{\left(a^{2}+x\right)\left(b^{2}+x\right)\left(c^{2}+x\right)}}
$$

differs from the original model of resistance by at most 0.001 . Hint: make use of the integral and the comparison test.
6. Determine whether the following improper integrals converge or diverge.
(a) $\int_{1}^{\infty} \frac{1}{x+e^{x}} d x$
(b) $\int_{1}^{e} \frac{1}{x(\ln (x))^{2}} d x$

With a lot of hard work, we filled the table to the right with the values of $\int_{-\pi}^{\pi} f(x) g(x) d x$, where $f$ is the row and $g$ is the column, and $m$ and $n$ are positive integers.

|  | 1 | $\sin (n x)$ | $\cos (n x)$ |
| :---: | :---: | :---: | :---: |
| 1 | $2 \pi$ | 0 | 0 |
| $\sin (m x)$ | 0 | $\left\{\begin{array}{cc}\pi & \text { if } m=n \\ 0 & \text { otherwise }\end{array}\right.$ | 0 |
| $\cos (m x)$ | 0 | 0 | $\left\{\begin{array}{cc}\pi & \text { if } m=n \\ 0 & \text { otherwise }\end{array}\right.$ |



Suppose $h(x)$ is some function you measure in nature, and its graph looks like the one above. You do some numerical integration and discover that

$$
\begin{aligned}
& \int_{-\pi}^{\pi} h(x) d x=0 \quad \int_{-\pi}^{\pi} h(x) \cos (2 x) d x=6.28 \\
& \int_{-\pi}^{\pi} h(x) \cos (x) d x=3.14 \quad \int_{-\pi}^{\pi} h(x) \sin (2 x) d x=4.71 \\
& \int_{-\pi}^{\pi} h(x) \sin (x) d x=6.28 \quad \int_{-\pi}^{\pi} h(x) \cos (n x) d x=\int_{-\pi}^{\pi} h(x) \sin (n x) d x=0 \text { for } n \geq 3 \text {. }
\end{aligned}
$$

Can you guess a formula for $h(x)$ ? Use what you know, and check by graphing your formula on a calculator.
8. We learned recently that

$$
\frac{1}{1-x}=1+x+x^{2}+x^{3}+\cdots
$$

as long as $|x|<1$. You can think of both sides of the equation as functions of $x$, and so we have the suprising new idea that a common function we're familar with, $\frac{1}{1-x}$, can be expressed as an infinite series, for certain values of $x$.
Maybe other functions we know and like can also be expressed as series? Suppose that:

$$
e^{x}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots
$$

for some constants $a_{0}, a_{1}, a_{2}, \ldots$, for all $x$.
(a) What must $a_{0}$ be? Hint: plug in 0 to both sides.
(b) Take the derivative of both sides. Now deduce $a_{1}$.
(c) Repeat to find $a_{2}, a_{3}, a_{4}, \ldots$..
(d) Can it really be true?!? Try to test with the first 10 terms of the series and $x=1$.

