## Douglass Houghton Workshop, Section 2, Thu 02/13/20 Worksheet Giraffe

1. Consider the "Puppy Paws" bet in craps. The bet wins on double fives ( $[\because 0 . \because \because 0$ ) and loses on "soft ten" ( $\because: \square$ or $: \square: \square)$ and on 7 . If something other than a 7 or 10 is rolled, the bet stays through the next roll.
(a) Draw the addition table below on the board and fill it in.

| + | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  |  |  |  |  |  |
| 2 |  |  |  |  |  |  |
| 3 |  |  |  |  |  |  |
| 4 |  |  |  |  |  |  |
| 5 |  |  |  |  |  |  |
| 6 |  |  |  |  |  |  |

(b) Calculate these probabilities:

- $W=$ the probability of winning on the first roll.
- $L=$ the probability of losing on the first roll.
- $C=$ the probability that the game continues to a second roll.
(c) Calculate the probability of winning on the second roll.
(d) Calculate the probability of winning on the $k$ th roll.
(e) Calculate the probability of winning on one of the first $n$ rolls.
(f) Calculate the probability of winning the Puppy Paws bet.

2. (This problem appeared on a Winter, 2009 Math 116 exam) The quantity

$$
\int_{1}^{\infty} \frac{d x}{\sqrt{\left(a^{2}+x\right)\left(b^{2}+x\right)\left(c^{2}+x\right)}}
$$

roughly models the resistance that football-shaped plankton encounter when falling through water. Note that $a=1, b=2$, and $c=3$ are constants that describe the dimensions of the plankton. Find a value of $M$ for which

$$
\int_{1}^{M} \frac{d x}{\sqrt{\left(a^{2}+x\right)\left(b^{2}+x\right)\left(c^{2}+x\right)}}
$$

differs from the original model of resistance by at most 0.001 . Hint: make use of the integral and the comparison test.
3. Determine whether the following improper integrals converge or diverge.
(a) $\int_{1}^{\infty} \frac{1}{x+e^{x}} d x$
(b) $\int_{1}^{e} \frac{1}{x(\ln (x))^{2}} d x$

We've done a lot of integrals with sines and cosines, and filled in this table with the results of $\int_{-\pi}^{\pi} f(x) g(x) d x$ :

| $f \backslash g$ | 1 | $\sin (n x)$ | $\cos (n x)$ |
| :---: | :---: | :---: | :---: |
| 1 | $2 \pi$ | 0 | 0 |
| $\sin (m x)$ | 0 | $\pi$ if $m=n, 0$ if $m \neq n$ | 0 |
| $\cos (m x)$ | 0 | 0 | $\pi$ if $m=n, 0$ if $m \neq n$ |

4. Let $h(x)=5+2 \cos (x)+\sin (x)-5 \cos (2 x)+3 \sin (2 x)$.
(a) Use your calculator to compute:

$$
\begin{array}{rlrl}
\int_{-\pi}^{\pi} h(x) d x & = & & \int_{-\pi}^{\pi} h(x) \cos (2 x) d x= \\
\int_{-\pi}^{\pi} h(x) \cos (x) d x & = & \int_{-\pi}^{\pi} h(x) \sin (2 x) d x= \\
\int_{-\pi}^{\pi} h(x) \sin (x) d x & = &
\end{array}
$$

(b) Explain the results using the table above.
5. Predict what the integrals in (4a) above will be if we change $h(x)$ to

$$
h(x)=2+3 \cos (x)-7 \sin (x)-4 \cos (2 x)+\sin (2 x) .
$$

6. Generalize: What will those integrals be if

$$
h(x)=a_{0}+a_{1} \cos (x)+b_{1} \sin (x)+a_{2} \cos (2 x)+b_{2} \sin (2 x) .
$$

7. ( 6 pts ) (This problem appeared on a Winter, 2003 Math 116 exam) The chambered nautilus builds a spiral sequence of closed chambers. It constructs them from the inside out, with each chamber approximately $20 \%$ larger (by volume) than the last. (The large open section at the top is not a "chamber.") The largest chamber is 9 cubic inches. Show your work on both parts.
(a) How much volume is enclosed by the last 15 chambers constructed?
(b) How much volume is enclosed by all the chambers? Assume for simplicity that there are infinitely many chambers.
8. Prove whether the following improper integrals converge or diverge.
(a) $\int_{3}^{\infty} \frac{\ln (x)}{x^{2}} d x$
(b) $\int_{0}^{\infty} \frac{3}{4 x^{2}+5 \sqrt{x}} d x$
