1. (Adapted from a Fall, 2005 Math 116 exam) The Sierpinski Carpet is an example of a mathematical object called a fractal. To construct it, start with a 1×1 red square (stage 0). Then,

- In stage 1 , remove the center $\left(\frac{1}{3} \times \frac{1}{3}\right)$ square,
- In stage 2 , remove the centers of the remaining 8 squares,
- In stage 3 , remove the centers of all the remaining squares,
and so on, for infinitely many stages. The figure below shows stages 0 through 3 .

(a) Fill in the table below with data about the first few stages of the process:

Stage	\# squares removed	size of each removed square
1		
2		
3		

(b) What would the nth entry in the table say? How much area is removed in the nth stage of construction?
(c) How much area has been removed from stage 0 to stage n ?
(d) How much area is left after an infinite number of stages?
2. (From a Fall, 2015 Math 116 Exam) The graph of part of a function $g(x)$ is below.

(a) A thumbtack has the shape of the solid obtained by rotating the region bounded by $y=g(x)$, the x axis, and the y-axis, about the y-axis. Find an expression involving integrals that gives the volume of the thumbtack.
(b) A doorknob has the shape of the solid obtained by rotating the same region about the x-axis. Find an expression involving integrals that gives the volume of the door knob.
3. (Adapted from a Winter, 2010 exam problem)
(a) Find the first four nonzero terms of the Taylor series for $\ln (1+x)$ about $x=0$.
(b) Find the first three nonzero terms of the Taylor series for $g(x)=\ln \left(\frac{1+x}{1-x}\right)$ about $x=0$. Hint: Rules of logarithms.
(c) Find the exact value of the sum of the series $2\left(\frac{3}{4}\right)+\frac{2}{3}\left(\frac{3}{4}\right)^{3}+\frac{2}{5}\left(\frac{3}{4}\right)^{5}+\cdots$
4. (Fall, 2007) Find the interval of convergence of $\sum_{n=3}^{\infty} \frac{(3-x)^{3 n}}{8^{n}(n-2)}$.

