Douglass Houghton Workshop, Section 1, Wed 02/26/20

Worksheet If You Tickle Us, Do We Not Laugh?

With a lot of hard work, we filled the table to the right with the values of $\int_{-\pi}^{\pi} f(x)g(x) dx$, where f is the row and g is the column, and m and n are positive integers.

	1	$\sin(nx)$	$\cos(nx)$
1	2π	0	0
$\sin(mx)$	0	$\begin{cases} \pi & \text{if } m = n \\ 0 & \text{otherwise} \end{cases}$	0
$\cos(mx)$	0	0	$\begin{cases} \pi & \text{if } m = n \\ 0 & \text{otherwise} \end{cases}$

The implication was that for a function of the form

(1)
$$f(x) = a_0 + a_1 \cos(x) + a_2 \cos(2x) + a_3 \cos(3x) + \cdots + b_1 \sin(x) + b_2 \sin(2x) + b_3 \sin(3x) + \cdots$$

integrating against a sine or cosine function makes almost all the terms 0, so for $n \ge 1$:

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx$$
, $a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx$, and $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx$.

Writing a function in the form of Equation (1) is called finding the **Fourier Series** of the function.

- 1. Let's compute the Fourier series for $f(x) = x^2$.
 - (a) Compute a_0 .
 - (b) Fill in the table to the right.
 - (c) Find the a_n and b_n for $f(x) = x^2$.
- 2. Find the probability of winning the pass bet in craps.
- 3. Last time it appeared we showed that $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots$. Crazy!
 - (a) We got that series by considering derivatives and plugging in x = 0. See if you can deduce a series for $\cos(x)$ the same way, by starting with

$$\cos(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \cdots$$

- (b) Test it at $x = \pi$, by adding up all the terms through x^{10} . Is it close to what you expect it to be?
- (c) Do the same for sin(x).
- (d) Now systemetize the result: if we have a function f(x) which has derivatives, how do we find its series? Find formulas for a_0 , a_1 , etc. in terms of f.