# Douglass Houghton Workshop, Section 1, Wed 02/26/20 Worksheet If You Tickle Us, Do We Not Laugh? 

With a lot of hard work, we filled the table to the right with the values of $\int_{-\pi}^{\pi} f(x) g(x) d x$, where $f$ is the row and $g$ is the column, and $m$ and $n$ are positive integers.

|  | 1 | $\sin (n x)$ | $\cos (n x)$ |
| :---: | :---: | :---: | :---: |
| 1 | $2 \pi$ | 0 | 0 |
| $\sin (m x)$ | 0 | $\left\{\begin{array}{cc}\pi & \text { if } m=n \\ 0 & \text { otherwise }\end{array}\right.$ | 0 |
| $\cos (m x)$ | 0 | 0 | $\begin{cases}\pi & \text { if } m=n \\ 0 & \text { otherwise }\end{cases}$ |

The implication was that for a function of the form

$$
\begin{align*}
f(x)=a_{0} & +a_{1} \cos (x)+a_{2} \cos (2 x)+a_{3} \cos (3 x)+\cdots  \tag{1}\\
& +b_{1} \sin (x)+b_{2} \sin (2 x)+b_{3} \sin (3 x)+\cdots
\end{align*}
$$

integrating against a sine or cosine function makes almost all the terms 0 , so for $n \geq 1$ :

$$
a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) d x, \quad a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (n x) d x, \quad \text { and } \quad b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (n x) d x .
$$

Writing a function in the form of Equation (1) is called finding the Fourier Series of the function.

1. Let's compute the Fourier series for $f(x)=x^{2}$.
(a) Compute $a_{0}$.
(b) Fill in the table to the right.
(c) Find the $a_{n}$ and $b_{n}$ for $f(x)=x^{2}$.

| $n$ | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\sin (n \pi)$ |  |  |  |  |  |  |
| $\sin (-n \pi)$ |  |  |  |  |  |  |
| $\cos (n \pi)$ |  |  |  |  |  |  |
| $\cos (-n \pi)$ |  |  |  |  |  |  |

2. Find the probability of winning the pass bet in craps.
3. Last time it appeared we showed that $e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots$. Crazy!
(a) We got that series by considering derivatives and plugging in $x=0$. See if you can deduce a series for $\cos (x)$ the same way, by starting with

$$
\cos (x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots
$$

(b) Test it at $x=\pi$, by adding up all the terms through $x^{10}$. Is it close to what you expect it to be?
(c) Do the same for $\sin (x)$.
(d) Now systemetize the result: if we have a function $f(x)$ which has derivatives, how do we find its series? Find formulas for $a_{0}, a_{1}$, etc. in terms of $f$.

