Douglass Houghton Workshop, Section 1, Mon 02/17/20 Worksheet Flamingo

1. Consider the "Puppy Paws" bet in craps. The bet wins on double fives ($\because \circ \square \circ$) and
 rolled, the bet stays through the next roll.
(a) Draw the addition table below on the board and fill it in.

+	1	2	3	4	5	6
1						
2						
3						
4						
5						
6						

(b) Calculate these probabilities:

- $W=$ the probability of winning on the first roll.
- $L=$ the probability of losing on the first roll.
- $C=$ the probability that the game continues to a second roll.
(c) Calculate the probability of winning on the second roll.
(d) Calculate the probability of winning on the k th roll.
(e) Calculate the probability of winning on one of the first n rolls.
(f) Calculate the probability of winning the Puppy Paws bet.

2. Recall that:

$$
\begin{aligned}
\sin (x+y) & =\sin (x) \cos (y)+\cos (x) \sin (y) \\
\sin (x-y) & =\sin (x) \cos (y)-\cos (x) \sin (y) \\
\cos (x+y) & =\cos (x) \cos (y)-\sin (x) \sin (y) \\
\cos (x-y) & =\cos (x) \cos (y)+\sin (x) \sin (y)
\end{aligned}
$$

(a) Use the first two identities to get $\sin (x) \cos (y)$ in terms of $\sin (x+y)$ and $\sin (x-y)$.
(b) Use the next two identities to get $\cos (x) \cos (y)$ in terms of $\cos (x+y)$ and $\cos (x-y)$.
(c) Do the same for $\sin (x) \sin (y)$.
3. Find $\int_{-\pi}^{\pi} \sin (m x) \cos (n x) d x$ where m and n are positive integers.
4. Find $\int_{-\pi}^{\pi} \sin (m x) \sin (n x) d x$, given that m and n are positive integers.
5. (6 pts) (This problem appeared on a Winter, 2003 Math 116 exam) The chambered nautilus builds a spiral sequence of closed chambers. It constructs them from the inside out, with each chamber approximately 20% larger (by volume) than the last. (The large open section at the top is not a "chamber.") The largest chamber is 9 cubic inches. Show your work on both parts.

(a) How much volume is enclosed by the last 15 chambers constructed?
(b) How much volume is enclosed by all the chambers? Assume for simplicity that there are infinitely many chambers.
6. (This problem appeared on a Winter, 2009 Math 116 exam) The quantity

$$
\int_{1}^{\infty} \frac{d x}{\sqrt{\left(a^{2}+x\right)\left(b^{2}+x\right)\left(c^{2}+x\right)}}
$$

roughly models the resistance that football-shaped plankton encounter when falling through water. Note that $a=1, b=2$, and $c=3$ are constants that describe the dimensions of the plankton. Find a value of M for which

$$
\int_{1}^{M} \frac{d x}{\sqrt{\left(a^{2}+x\right)\left(b^{2}+x\right)\left(c^{2}+x\right)}}
$$

differs from the original model of resistance by at most 0.001 . Hint: make use of the integral and the comparison test.
7. We learned recently that

$$
\frac{1}{1-x}=1+x+x^{2}+x^{3}+\cdots
$$

as long as $|x|<1$. You can think of both sides of the equation as functions of x, and so we have the suprising new idea that a common function we're familar with, $\frac{1}{1-x}$, can be expressed as an infinite series, for certain values of x.
Maybe other functions we know and like can also be expressed as series? Suppose that:

$$
e^{x}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots
$$

for some constants $a_{0}, a_{1}, a_{2}, \ldots$, for all x.
(a) What must a_{0} be? Hint: plug in 0 to both sides.
(b) Take the derivative of both sides. Now deduce a_{1}.
(c) Repeat to find $a_{2}, a_{3}, a_{4}, \ldots$..
(d) Can it really be true?!? Try to test with the first 10 terms of the series and $x=1$.

