Douglass Houghton Workshop, Section 2, Thu 04/04/19 Worksheet One Ring to Rule Them All

1. There is nothing special at latitude $14^{\circ} 38^{\prime} 53^{\prime \prime} \mathrm{N}$, longitude $78^{\circ} 6^{\prime} 28^{\prime \prime} \mathrm{W}$. It's just a point in the ocean. But, if you were to shoot a neutrino from the middle of the Diag (latitude $42^{\circ} 16^{\prime} 36^{\prime \prime} \mathrm{N}$, longitude $83^{\circ} 44^{\prime} 15^{\prime \prime} \mathrm{W}$) to that point, through the earth's crust, its deepest point would be directly under a very interesting place. Find that place.
2. Last time we found a remarkable power series:
$\frac{x}{1-x-x^{2}}=x+x^{2}+2 x^{3}+3 x^{4}+5 x^{5}+8 x^{6}+13 x^{7}+21 x^{8}+34 x^{9}+55 x^{10}+\cdots=\sum_{n=0}^{\infty} F_{n} x^{n}$
where F_{n} is the nth Fibonacci number, defined by $F_{n}=F_{n-1}+F_{n-2}$. That's already a pretty cool result. But if we play our cards right, we can parlay it into a non-recursive formula for the Fibonacci numbers.
(a) If a is a constant, what is the power series for $\frac{1}{1-a x}$ about $x=0$?
(b) Verify that if $\alpha=\frac{1+\sqrt{5}}{2}$ and $\beta=\frac{1-\sqrt{5}}{2}$ then $(1-\alpha x)(1-\beta x)=1-x-x^{2}$.
(c) Now suppose we could split the generating function above like this:

$$
\frac{x}{1-x-x^{2}}=\frac{A}{1-\alpha x}+\frac{B}{1-\beta x}
$$

for some constants A and B. Find what A and B must be to make the equation above work for all values of x.
(d) Now find the series for $\frac{A}{1-\alpha x}$ and $\frac{B}{1-\beta x}$, in Σ form, and add them together to get a formula for the Fibonacci numbers.
3. Find the probability of winning the pass bet in craps.
4. Suppose you are watching Tahmina ride a unicycle in the dark. The only thing you can see is a red reflector which is on the outer edge of the front wheel. As Tahmina moves from left to right, you see the reflector trace out the path below:

(a) The wheels in the picture represent snapshots taken every quarter second. The dots are the reflector. Assuming the wheel's center in the first snapshot is $(0,0)$ and the radius of the wheel is r, fill in the table below with the center's position and the reflector's position at time t.

t	0 sec	$1 / 4 \mathrm{sec}$	$1 / 2 \mathrm{sec}$	$3 / 4 \mathrm{sec}$	1 sec
$x_{c}=$ center's x	0				
$y_{c}=$ center's y	0				
$x_{r}=$ reflector's x					
$y_{r}=$ reflector's y					

(b) Find formulas for x_{c}, y_{c}, x_{r}, and y_{r} in terms of t.
(c) Find the exact distance traveled by the reflector in one minute. No approximations!
5. We found an amazing formula last time:

$$
e^{i \theta}=\cos (\theta)+i \sin (\theta)
$$

where $i=\sqrt{-1}$. We got it by using Taylor series for our favorite functions, and plugging in $i \theta$ to see what happens.
The set of complex numbers is the set of all things of the form $x+i y$, where x and y are real numbers. You know that real numbers can be represented on a (one-dimensional) number line. Similarly, complex numbers can be represented as points in a (twodimensional) plane. So $x+i y$ is plotted as the point (x, y).
(a) Plot $1+3 i, 2-3 i$, and $2+3 i$ on the complex plane.
(b) Devise a graphical way to add two complex numbers. Hint: first draw arrows from the origin to the points.
(c) Draw the unit circle, and plot the points $(\sqrt{2} / 2, \sqrt{2} / 2)$ and $(\sqrt{3} / 2,1 / 2)$ on the circle. What are their polar coordinates?
(d) What happens when you multiply

$$
\left(\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i\right)\left(\frac{\sqrt{3}}{2}+\frac{1}{2} i\right) ?
$$

Foil it out.
(e) Use $e^{i \theta}=\cos (\theta)+i \sin (\theta)$ to convert both those numbers to the form $e^{i \theta}$. Now what happens when you multiply? Use rules of exponents. Check that you got the same answer as before.
(f) Devise a general graphical way to multiply complex numbers.

