
Douglass Houghton Workshop, Section 2, Thu 03/14/19

Worksheet Love looks not with the eyes, but with the mind
And therefore is winged Cupid painted blind

1. (Fall, 2014) Prove whether these series converge or diverge:

(a)
∞∑

n=2

(−1)n ln(n)

n
(b)

∞∑

n=1

n
√
n3 + 2

2. (From the Winter, 2010 Math 116 Final Exam) Discover whether the following series
converge or diverge, and justify using an appropriate converge test or tests. No credit
without justification.

(a)
∞∑

n=2

√
n2 + 1

n2 − 1
(b)

∞∑

n=1

n!(n + 1)!

(2n)!
(c)

∞∑

n=2

sin(n)

n2 − 3

3. We know by the integral test that ζ(2) = 1 +
1

4
+

1

9
+

1

16
+ · · ·+

1

n2
+ · · · converges.

But what does it converge to?

(a) Use your calculator to find the first dozen or so partial sums.
Can you guess what the limit is? If you like, type in the calcu-
lator program on the right and let it run, to see how the partial
sums change.

0 → S

1 → N

Lbl 10

S+1/N2 → S

N+1 → N

Disp S

Goto 10

(b) The day before spring break we found the Fourier Series for x2, namely

x2 =
π2

3
+

∞∑

n=1

(−1)n
4

n2
cos(nx).

It wasn’t clear why we wanted to do that—it seemed silly to write x2 in terms of
an infinite sum of cosines. But now: plug in x = π and see if you can find ζ(2).

4. Last time it appeared we showed that ex = 1 + x+
x2

2!
+

x3

3!
+

x4

4!
+ · · · . Crazy!

(a) We got that series by considering derivatives and plugging in x = 0. See if you
can deduce a series for cos(x) the same way, by starting with

cos(x) = a0 + a1x+ a2x
2 + a3x

3 + · · ·

(b) Test it at x = π, by adding up all the terms through x10. Is it close to what you
expect it to be?

(c) Do the same for sin(x).

(d) Now systemetize the result: if we have a function f(x) which has derivatives, how
do we find its series? Find formulas for a0, a1, etc. in terms of f .



5. The figure below contains only 120◦ angles. As you move away from the center, the
line segments get shorter by a factor r. That is, the longest segments (connected to
the center) have length 1, the next longest have length r, the next longest after that
have length r2, etc. Assume the branches keep splitting and splitting, ad infinitum.
Most of your answers will be in terms of r, but we’ll be able to find what r is in part
(h). No ‘. . .’ or ‘

∑
’ allowed in any of your answers.

(a) Suppose you start at the center
and follow the generally northward
path. That is, go to A, then turn
right and go to B, then turn left,
right, left, etc. How far will you tra-
vel after n steps? How far will you
travel if you take an infnite number
of steps?

(b) If you take the path described in
part (a), how far to the north will
you have gone when you reach A?
(That is, how much higher on the
page is A than the center?) How
far north will you have gone when
you reach B? When you have gone
n steps?

(c) Use the result of part (b) to give the
total height of the figure.

A

B

C

D

(d) Find the distance from the center to the left side of the figure by following the
generally northwestward path that goes to A, then turns left to C, then right,
left, right, etc. This time you want the horizontal distance travelled.

(e) Find the distance from the center to the right side of the figure by following a
generally northeastward path. Thus find the total width of the figure.

Now of course, the picture could be drawn with any value of r. But if r were too
large, the figure would overlap itself, and if r were too small, it would hard to see
what’s going on. The picture above was drawn by using the largest possible value of
r which doesn’t cause overlap. Thus the path that goes generally southward from C

never crosses the path that goes generally northward from D, but they do approach
the same point.

(f) Find the vertical distance from C to D by using a path through the center.

(g) Find the same distance by considering the southward path from C and the
northward path from D.

(h) Set them equal and solve for r. Do you recognize this number?


