Douglass Houghton Workshop, Section 2, Thu 02/28/19 Worksheet Just Do It

With a lot of hard work, we filled the table to the right with the values of $\int_{-\pi}^{\pi} f d x(x) g(x) d x$, where f is the row and g is the column, and m and n are positive integers.

	1	$\sin (n x)$	$\cos (n x)$
1	2π	0	0
$\sin (m x)$	0	$\begin{cases}\pi & \text { if } m=n \\ 0 & \text { otherwise }\end{cases}$	0
$\cos (m x)$	0	0	$\begin{cases}\pi & \text { if } m=n \\ 0 & \text { otherwise }\end{cases}$

The implication was that for a function of the form

$$
\begin{align*}
f(x)=a_{0} & +a_{1} \cos (x)+a_{2} \cos (2 x)+a_{3} \cos (3 x)+\cdots \\
& +b_{1} \sin (x)+b_{2} \sin (2 x)+b_{3} \sin (3 x)+\cdots \tag{1}
\end{align*}
$$

integrating against a sine or cosine function makes almost all the terms 0 , so for $n \geq 1$:

$$
a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) d x, \quad a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (n x) d x, \quad \text { and } \quad b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (n x) d x
$$

Writing a function in the form of Equation (1) is called finding the Fourier Series of the function.

1. For reasons unexplained, let's approximate the function $f(x)=x^{2}$ by its Fourier series.
(a) The b_{n} are all 0 . Why?
(b) Find a_{0}.
(c) Find a_{n} for $n \geq 1$. Hint: Ladder Method.
2. (6 pts) (This problem appeared on a Winter, 2003 Math 116 exam) The chambered nautilus builds a spiral sequence of closed chambers. It constructs them from the inside out, with each chamber approximately 20% larger (by volume) than the last. (The large open section at the top is not a "chamber.") The largest chamber is 9 cubic inches. Show your work on both parts.

(a) How much volume is enclosed by the last 15 chambers constructed?
(b) How much volume is enclosed by all the chambers? Assume for simplicity that there are infinitely many chambers.
3. Find the probability of winning the pass bet in craps.
4. (Adapted from a Fall, 2003 Math 116 Exam)
(a) Express the number

$$
.135135135 \overline{135}
$$

as the sum of a geometric series.
(b) Use the infinite geometric series formula to express that same number as a fraction in lowest terms.

