Douglass Houghton Workshop, Section 2, Thu 02/21/19 Worksheet Hamster

With a lot of hard work, we filled the table to the right with the values of $\int_{-\pi}^{\pi} f d x(x) g(x) d x$, where f is the row and g is the column, and m and n are positive integers.

	1	$\sin (n x)$	$\cos (n x)$
1	2π	0	0
$\sin (m x)$	0	$\begin{cases}\pi & \text { if } m=n \\ 0 & \text { otherwise }\end{cases}$	0
$\cos (m x)$	0	0	$\begin{cases}\pi & \text { if } m=n \\ 0 & \text { otherwise }\end{cases}$

1. Let $h(x)=5+2 \cos (x)+\sin (x)-5 \cos (2 x)+3 \sin (2 x)$.
(a) Use your calculator to compute:

$$
\begin{array}{rlrl}
\int_{-\pi}^{\pi} h(x) d x & = & & \int_{-\pi}^{\pi} h(x) \cos (2 x) d x= \\
\int_{-\pi}^{\pi} h(x) \cos (x) d x & = & & \int_{-\pi}^{\pi} h(x) \sin (2 x) d x= \\
\int_{-\pi}^{\pi} h(x) \sin (x) d x & = &
\end{array}
$$

(b) Explain the results using the table above.
2. Predict what the integrals in (1a) above will be if we change $h(x)$ to

$$
h(x)=2+3 \cos (x)-7 \sin (x)-4 \cos (2 x)+\sin (2 x)
$$

3. Generalize: What will those integrals be if

$$
h(x)=a_{0}+a_{1} \cos (x)+b_{1} \sin (x)+a_{2} \cos (2 x)+b_{2} \sin (2 x) .
$$

4. (This problem appeared on a Winter, 2009 Math 116 exam) The quantity

$$
\int_{1}^{\infty} \frac{d x}{\sqrt{\left(a^{2}+x\right)\left(b^{2}+x\right)\left(c^{2}+x\right)}}
$$

roughly models the resistance that football-shaped plankton encounter when falling through water. Note that $a=1, b=2$, and $c=3$ are constants that describe the dimensions of the plankton. Find a value of M for which

$$
\int_{1}^{M} \frac{d x}{\sqrt{\left(a^{2}+x\right)\left(b^{2}+x\right)\left(c^{2}+x\right)}}
$$

differs from the original model of resistance by at most 0.001 . Hint: make use of the integral and the comparison test.
5. Consider a game of "continuous darts". The board is circular, as you expect, with radius 1 . The goal is to get as close to the middle as possible. If a dart lands a distance r from the bullseye, its score is $1-r$. (So every number between 0 and 1 is a possible score.)

A novice player throws a dart which lands randomly somewhere on the board. That means that for any region R on the board,

$$
\operatorname{Prob}(\text { dart lands in } R)=\frac{\text { area of } R}{\text { area of board }}
$$

(a) Fill in the table with the probabilities that the dart scores below the given value.

x	0	$1 / 4$	$1 / 2$	$3 / 4$	1
Prob(score $<x)$					

(b) Let x be any number. Find the probability that the score is less than x.
(c) Find the median score.
6. The function you found in (5b) above is called the cumulative distribution function or CDF of the score. Let's call it $P(x)$.
(a) Use $P(x)$ to find the probability that the score is between $1 / 3$ and $2 / 3$.
(b) How would you use $P(x)$ to find the probability that a score is between a and b ?
(c) Hmmm, that answer reminds you of the First Fundamental Theorem of Calculus, I bet. Can you write it as an integral?

The derivative of $P(x)$ is called the probability density function or PDF of the score. Let's call if $p(x)$.
7. Find the mean score of Continuous Darts by computing the integral

$$
\int_{-\infty}^{\infty} x p(x) d x .
$$

8. Last time we found that the probability of winning the Hard Eight ($\because \because: \%$) bet in craps on the k th roll is $C^{k-1} W$, where $W=1 / 36$ and $C=25 / 36$.
(a) That means the probability of winning on one of the first n rolls is

$$
P_{n}=W+C W+C^{2} W+\cdots+C^{n-1} W
$$

So far so good, but that might be a big sum if n is big. How could we make it managable? Try this: Find $C P_{n}$, and subtract it from P_{n}.
(b) Use that result to find a formula for P_{n} with no \sum and no \cdots.
(c) Now find the probability of winning on any roll.
(d) The payoff for winning is 9 times what you bet. On average, how much money does the casino take out of a dollar bet on Hard Eight?

