Douglass Houghton Workshop, Section 1, Wed 04/10/19 Worksheet Never Was So Much Owed By So Many To So Few

1. Previously we found formulas for converting from latitude (ϕ) and longitude (θ) to Cartesian coordinates:

$$
\begin{aligned}
& x=\rho \cos \phi \cos \theta \\
& y=\rho \cos \phi \sin \theta \\
& z=\rho \sin \phi
\end{aligned}
$$

Where the origin is the center of the earth and ρ is the distance from the center, which is 1 on the earth's surface.
(a) How can you find ρ if you know x, y, and z ? (Hint: in polar coordinates, how do you find r in terms of x and y ?)
(b) Likewise find formulas for ϕ and θ in terms of x, y, and z.
2. There is still nothing special at latitude $14^{\circ} 38^{\prime} 53^{\prime \prime} \mathrm{N}$, longitude $78^{\circ} 6^{\prime} 28^{\prime \prime} \mathrm{W}$. It's just a point in the ocean. But, if you were to shoot a neutrino from the middle of the Diag (latitude $42^{\circ} 16^{\prime} 36^{\prime \prime} \mathrm{N}$, longitude $83^{\circ} 44^{\prime} 15^{\prime \prime} \mathrm{W}$) to that point, through the earth's crust, its deepest point would be directly under a very interesting place. Find that place, using the Google spreadsheet linked on our homepage.
3. Last time we found a remarkable power series:

$$
\frac{x}{1-x-x^{2}}=x+x^{2}+2 x^{3}+3 x^{4}+5 x^{5}+8 x^{6}+13 x^{7}+21 x^{8}+34 x^{9}+55 x^{10}+\cdots=\sum_{n=0}^{\infty} F_{n} x^{n}
$$

where F_{n} is the nth Fibonacci number, defined by $F_{n}=F_{n-1}+F_{n-2}$. That's already a pretty cool result. But if we play our cards right, we can parlay it into a non-recursive formula for the Fibonacci numbers.
(a) If a is a constant, what is the power series for $\frac{1}{1-a x}$ about $x=0$?
(b) Verify that if $\alpha=\frac{1+\sqrt{5}}{2}$ and $\beta=\frac{1-\sqrt{5}}{2}$ then $(1-\alpha x)(1-\beta x)=1-x-x^{2}$.
(c) Now suppose we could split the generating function above like this:

$$
\frac{x}{1-x-x^{2}}=\frac{A}{1-\alpha x}+\frac{B}{1-\beta x}
$$

for some constants A and B. Find what A and B must be to make the equation above work for all values of x.
(d) Now find the series for $\frac{A}{1-\alpha x}$ and $\frac{B}{1-\beta x}$, in Σ form, and add them together to get a formula for the Fibonacci numbers.
4. We've made some progress finding the shape of a hanging chain. If the shape is given by $F(x)$, then by considering forces and arc length we've shown that

$$
F^{\prime \prime}(x)=\frac{\delta g}{T_{0}} \sqrt{1+F^{\prime}(x)^{2}}
$$

where T_{0} is the tension at the bottom of the chain, δ is the mass density of the chain, and g is acceleration due to gravity (all constants). Where to go
 from here? We'd like to find a formula for $F(x)$.
(a) Hmmm. No $F \mathrm{~s}$, only $F^{\prime} \mathrm{s}$. And lots of constants. Let $y=F^{\prime}(x)$, and put all the constants together into one constant. That should make it look better.
(b) What is y when x is 0 ? Now you have an initial value to go with your differential equation.
(c) Separate the variables and solve the differential equation.
5. Tommy is still riding a unicycle in the dark. The only thing you can see is a red reflector which is on the outer edge of the wheel, which has radius r. As Tommy moves from left to right, the reflector traces out the path below:

Progress: Previously we found a table of values for the reflector's position:

t	0 sec	$1 / 4 \mathrm{sec}$	$1 / 2 \mathrm{sec}$	$3 / 4 \mathrm{sec}$	1 sec
$x_{c}=$ center's x	0	$\pi r / 2$	πr	$3 \pi r / 2$	$2 \pi r$
$y_{c}=$ center's y	0	0	0	0	0
$x_{r}=$ reflector's x	0	$\pi r / 2-r$	πr	$3 \pi r / 2+r$	$2 \pi r$
$y_{r}=$ reflector's y	$-r$	0	r	0	$-r$

(a) Find formulas for x_{c}, y_{c}, x_{r}, and y_{r} in terms of t. Hint on x_{r} : Add a line to the table for $x_{r}-x_{c}$.
(b) Find the exact distance traveled by the reflector in one minute. Solve by hand. No approximations! Hint: $\cos 2 \theta=1-2 \sin ^{2} \theta$.
6. (Adapted from a Winter, 2010 exam problem)
(a) Find the first four nonzero terms of the Taylor series for $\ln (1+x)$ about $x=0$.
(b) Find the first three nonzero terms of the Taylor series for $g(x)=\ln \left(\frac{1+x}{1-x}\right)$ about $x=0$. Hint: Rules of logarithms.
(c) Find the exact value of the sum of the series $2\left(\frac{3}{4}\right)+\frac{2}{3}\left(\frac{3}{4}\right)^{3}+\frac{2}{5}\left(\frac{3}{4}\right)^{5}+\cdots$

