Douglass Houghton Workshop, Section 1, Wed 02/27/19 Worksheet How far that little candle throws its beams!

So shines a good deed in a naughty world.

With a lot of hard work, we filled the table to the right with the values of $\int_{-\pi}^{\pi} f dx(x)g(x) dx$, where fis the row and g is the column, and m and n are positive integers.

	1	$\sin(nx)$	$\cos(nx)$
1	2π	0	0
$\sin(mx)$	0	$\begin{cases} \pi & \text{if } m = n \\ 0 & \text{otherwise} \end{cases}$	0
$\cos(mx)$	0	0	$\begin{cases} \pi & \text{if } m = n \\ 0 & \text{otherwise} \end{cases}$

The implication was that for a function of the form

(1)
$$f(x) = a_0 + a_1 \cos(x) + a_2 \cos(2x) + a_3 \cos(3x) + \cdots + b_1 \sin(x) + b_2 \sin(2x) + b_3 \sin(3x) + \cdots$$

integrating against a sine or cosine function makes almost all the terms 0, so for $n \ge 1$:

$$\int_{-\pi}^{\pi} f(x) \, dx = 2\pi a_0, \quad \int_{-\pi}^{\pi} f(x) \cos(nx) \, dx = \pi a_n, \quad \text{and} \quad \int_{-\pi}^{\pi} f(x) \sin(nx) \, dx = \pi b_n.$$

- 1. Generalize: Suppose that you have a function with the form of Equation (1), but you don't know the coefficients. You can, however, find integrals like the ones above.
 - How can you find a_1 , the coefficient of cos(x)?
 - How can you find a_n and b_n ?
- 2. Consider the square wave:

Suppose the square wave can be written in terms of sines and cosines, as in Equation (1) above. Find the a_n and the b_n .

3. Find the probability of winning the pass bet in craps.

- 4. (This problem appeared on a Winter, 2003 Math 116 exam) Fred likes to juggle. So does Jason. The number of minutes Fred can juggle five balls without dropping one is a random variable, with probability density function $f(t) = 0.8e^{-0.8t}$. Similarly, the function $j(t) = 1.5e^{-1.5t}$ describes Jason's skill. Here t is time in minutes.
 - (a) Find $\int_0^\infty f(t) dt$.
 - (b) What percentage of Jason's juggling attempts are "embarrassing," meaning they last for 10 seconds or less?
 - (c) How long can Fred juggle, on average?
 - (d) Who is the better juggler? Give a good reason for your decision.