Douglass Houghton Workshop, Section 1, Mon 02/25/19 Worksheet Go Placidly Amid the Noise and Haste

With a lot of hard work, we filled the table to the right with the values of $\int_{-\pi}^{\pi} f d x(x) g(x) d x$, where f is the row and g is the column, and m and n are positive integers.

	1	$\sin (n x)$	$\cos (n x)$
1	2π	0	0
$\sin (m x)$	0	$\left\{\begin{array}{cc}\pi & \text { if } m=n \\ 0 & \text { otherwise }\end{array}\right.$	0
$\cos (m x)$	0	0	$\begin{cases}\pi & \text { if } m=n \\ 0 & \text { otherwise }\end{cases}$

1. Let $h(x)=5+2 \cos (x)+\sin (x)-5 \cos (2 x)+3 \sin (2 x)$.
(a) Use your calculator to compute:

$$
\begin{aligned}
\int_{-\pi}^{\pi} h(x) d x & = \\
\int_{-\pi}^{\pi} h(x) \cos (x) d x & = \\
\int_{-\pi}^{\pi} h(x) \sin (x) d x & =
\end{aligned}
$$

$$
\begin{gathered}
\int_{-\pi}^{\pi} h(x) \cos (2 x) d x= \\
\int_{-\pi}^{\pi} h(x) \sin (2 x) d x=
\end{gathered}
$$

(b) Explain the results using the table above.
2. Predict what the integrals in (1a) above will be if we change $h(x)$ to

$$
h(x)=2+3 \cos (x)-7 \sin (x)-4 \cos (2 x)+\sin (2 x) .
$$

3. Generalize: What will those integrals be if

$$
h(x)=a_{0}+a_{1} \cos (x)+b_{1} \sin (x)+a_{2} \cos (2 x)+b_{2} \sin (2 x) .
$$

4.

Suppose $h(x)$ is some function you measure in nature, and its graph looks like the one above. You do some numercal integration and discover that

$$
\begin{aligned}
& \int_{-\pi}^{\pi} h(x) d x=0 \quad \int_{-\pi}^{\pi} h(x) \cos (2 x) d x=6.28 \\
& \int_{-\pi}^{\pi} h(x) \cos (x) d x=3.14 \quad \int_{-\pi}^{\pi} h(x) \sin (2 x) d x=4.71 \\
& \int_{-\pi}^{\pi} h(x) \sin (x) d x=6.28 \quad \int_{-\pi}^{\pi} h(x) \cos (n x) d x=\int_{-\pi}^{\pi} h(x) \sin (n x) d x=0 \text { for } n \geq 3 \text {. }
\end{aligned}
$$

Can you guess a formula for $h(x)$? Use what you know, and check by graphing your formula on a calculator.
5. Consider a game of "continuous darts". The board is circular, as you expect, with radius 1 . The goal is to get as close to the middle as possible. If a dart lands a distance r from the bullseye, its score is $1-r$. (So every number between 0 and 1 is a possible score.)

A novice player throws a dart which lands randomly somewhere on the board. That means that for any region R on the board,

$$
\operatorname{Prob}(\text { dart lands in } R)=\frac{\text { area of } R}{\text { area of board }}
$$

(a) Fill in the table with the probabilities that the dart scores below the given value.

(b) Let x be any number. Find the probability that the score is less than x.
(c) Find the median score.
6. The function you found in (5b) above is called the cumulative distribution function or CDF of the score. Let's call it $P(x)$.
(a) Use $P(x)$ to find the probability that the score is between $1 / 3$ and $2 / 3$.
(b) How would you use $P(x)$ to find the probability that a score is between a and b ?
(c) Hmmm, that answer reminds you of the First Fundamental Theorem of Calculus, I bet. Can you write it as an integral?

The derivative of $P(x)$ is called the probability density function or PDF of the score. Let's call if $p(x)$.
7. Find the mean score of Continuous Darts by computing the integral

$$
\int_{-\infty}^{\infty} x p(x) d x .
$$

8. Find the probability of winning the pass bet in craps.
9. (6 pts) (This problem appeared on a Winter, 2003 Math 116 exam) The chambered nautilus builds a spiral sequence of closed chambers. It constructs them from the inside out, with each chamber approximately 20% larger (by volume) than the last. (The large open section at the top is not a "chamber.") The largest chamber is 9 cubic inches. Show your work on both parts.

(a) How much volume is enclosed by the last 15 chambers constructed?
(b) How much volume is enclosed by all the chambers? Assume for simplicity that there are infinitely many chambers.
