Douglass Houghton Workshop, Section 2, Thu 11/30/23 Worksheet Some Rise By Sin, and Some By Virtue Fall

- (b) So for a fixed x, what is the maximum value of y, as the ladder moves?
- (c) You have found a formula for the curve at the top of the region we want. Simplify until it's beautiful. (This is the best part, so don't stop until it's truly wondrous.)
- 2. (Fall, 2011) For positive A and B, the force between two atoms is a function of the distance, r, between them:

$$f(r) = -\frac{A}{r^2} + \frac{B}{r^3}.$$

- (a) Find the zeroes of f in terms of A and B.
- (b) Find all critical points and inflection points of f in terms of A and B.
- (c) If f has a local minimum at (1, -2) find the values of A and B. Using your values for A and B, justify that (1, -2) is a local minimum.
- 3. Here is the graph of the *derivative* of the continuous function M(x). Using the fact that M(-4) = -2, sketch the graph of M(x). Give the coordinates of all critical points, inflection points, and endpoints.

4. (This problem appeared on a Winter, 2008 Math 115 exam) A bellows has a triangluar frame made of three rigid pieces. Two pieces, each 10 inches long, are hinged at the nozzle. They are attached to the third piece at points A and B which can slide, as shown in the diagrams below. (The figures show a 3D sketch of the bellows and a 2D sketch that may be specifically useful to solve the problem.)

Each piece of the frame is 2 inches wide, so the volume (in cubic inches) of air inside the bellows is equal to the area (in square inches) of the triangluar cross-section above, times 2. Suppose you pump the bellows by moving A downward toward the center at a constant speed of 3 in/sec. (So B moves upwards at the same speed.) What is the rate at which air is being pumped out when A and B are 12 inches apart? (So A is 6 inches from the center of the vertical piece of the frame.)

5. A trough, as shown below, is to be made with a base that is 2 feet wide and 10 feet long. The sides of the trough are also 2 feet wide by 10 feet long, and are to be placed so they make an angle θ with the vertical.

- (a) What is the area, in terms of θ , of a cross section of the trough perpendicular to its long side? What is the volume of the trough?
- (b) What angle θ will give the trough the largest volume, and what is that volume? [Hint: you can always replace $\cos^2(\theta)$ with $1 - \sin^2(\theta)$.]