Douglass Houghton Workshop, Section 1, Wed 10/23/19 Worksheet Joy is not in things; it is in us

1. Last time we thought about a parabolic mirror in the shape of the graph of $y= \pm \sqrt{4 x}$. So far we've found:

- A light ray $y=-b$ hits the mirror at $P=\left(b^{2} / 4,-b\right)$.
- The slope of the tangent at that point is $-2 / b$.
- The normal line at the same point has slope $b / 2$.
- When a line makes an angle θ with the x-axis, it has slope $\tan \theta$.
- So if we call the angle between the normal line and the horizontal θ, then $\theta=\tan ^{-1}(b / 2)$.

(a) Draw the picture on the board.
(b) To the ray, the mirror looks flat, just like the tangent line. Draw the reflected ray. What angle does it make with the x-axis?
(c) We know that $\sin 2 x=2 \sin x \cos x$ and $\cos 2 x=\cos ^{2} x-\sin ^{2} x$. Use those to find a formula for $\tan 2 x$ in terms of $\tan x$.
(d) What is the slope of the reflected ray?
(e) Write an equation for the reflected ray.
(f) Where does the reflected ray intersect the x-axis? What is surprising about this answer?
(g) Graph several rays, with their reflections.
(h) What's cool about this type of mirror?

2. (This problem appeared on a Fall, 2006 Math 115 exam) The Flux F, in millilitres per second, measures how fast blood flows along a blood vessel. Poiseuille's Law states that the flux is proportional to the fourth power of the radius, R, of the blood vessel, measured in millimeters. In other words $F=k R^{4}$ for some positive constant k.
(a) Find a linear approximation for F as a function of R near $R=0.5$. (Leave your answer in terms of k).
(b) A partially clogged artery can be expanded by an operation called an angioplasty, which widens the artery to increase the flow of blood. If the initial radius of the artery was 0.5 mm , use your approximation from part (a) to approximate the flux when the radius is increased by 0.1 mm .
(c) Is the answer you found in part (b) an under- or over-approximation? Justify your answer.
3. (This problem appeared on a Winter, 2005 Math 115 Exam) An example of Descartes' folium, shown in the picture to the right, is given by $x^{3}+y^{3}=6 x y$.
(a) Show that the point $(3,3)$ is on the graph.
(b) Find the equation of the tangent to the graph at the point $(3,3)$.
(c) For what value(s) of x will the tangent to this curve be horizontal? [You do not need to solve for both x and y-just show x in terms of y.]
(d) (Added for DHSP) Oh heck, go ahead and find the point(s).

4. (Fall, 2013) For each real number k, there is a curve in the plane given by the equation $e^{y^{2}}=x^{3}+k$.
(a) Find $d y / d x$.
(b) Suppose that $k=9$. There are two points on the curve where the tangent line is horizontal. Find the x and y coordinates of each one.
(c) Now suppose that $k=\frac{1}{2}$. How many points are there where the curve has a horizontal tangent line?
5. (This problem appeared on a Fall, 2008 Math 115 exam) Determine a and b for the function of the form $y=f(t)=a t^{2}+b / t$, with a local minimum at $(1,12)$.
6. Molecules absorb far-infrared radiation because its excites their rotation. The absorption coefficient a of a given liquid varies with the frequency ω of the radiation according to

$$
a(\omega)=\frac{10}{\omega^{2}-2 c \omega+125}
$$

where c is some constant $(0 \leq c \leq 11)$.
(a) For what value of the frequency ω is the absorption a maximum?
(b) Graph $a(\omega)$ for $c=11$. How would you describe the shape of this graph?
[Note: with appropriate parameters this function describes the shapes of the lines in many kinds of spectroscopy].
7. (This problem appeared on a Winter, 2004 Math 115 exam. Really!) While exploring an exotic spring break location, you discover a colony of geese who lay golden eggs. You bring 20 geese back with you. Suppose each goose can lay 294 golden eggs per year. You decide maybe 20 geese isn't enough, so you consider getting some more of these magical creatures. However, for each extra goose you bring home there are less resources for all the geese. Therefore, for each new goose the amount of eggs produced will decrease by 7 eggs per goose per year. How many more geese should you bring back if you want to maximize the number of golden eggs per year laid?

