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ABSTRACT

High-level eukaryotic genomes present a particular challenge to the computational identi-
fication of transcription factor binding sites (TFBSs) because of their long noncoding re-
gions and large numbers of repeat elements. This is evidenced by the noisy results gener-
ated by most current methods. In this paper, we present a p-value-based scoring scheme
using probability generating functions to evaluate the statistical significance of potential
TFBSs. Furthermore, we introduce the local genomic context into the model so that can-
didate sites are evaluated based both on their similarities to known binding sites and on
their contrasts against their respective local genomic contexts. We demonstrate that our
approach is advantageous in the prediction of myogenin and MEF2 binding sites in the hu-
man genome. We also apply LMM to large-scale human binding site sequences in situ and
found that, compared to current popular methods, LMM analysis can reduce false positive
errors by more than 50% without compromising sensitivity. This improvement will be of
importance to any subsequent algorithm that aims to detect regulatory modules based on
known PSSMs.

Key words: probability generating function, statistical significance, local genomic context,
Position Specific Score Matrix (PSSM), transcription factor binding site.

INTRODUCTION

THE ELUCIDATION OF GENE FUNCTION, genetic network, and cellular processes requires the accurate
identification of transcription factor binding sites (TFBSs). Experimental approaches, such as DNase
footprinting (Galas and Schmitz, 1978) and gel mobility shift assay (Fried and Crothers, 1981; Garner and
Revzin, 1981), are in general expensive and time consuming. Given the large number of transcription factors
and the vast spans of noncoding genomic regions onto which they may bind, molecular characterization of
transcription mechanisms will be facilitated by the prediction of transcription factor binding sites in silico.
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Efforts on the computational prediction of TFBSs fall into two general approaches. The first seeks novel
recurrent patterns in a set of DNA sequences, often the promoters of genes found to be coregulated in gene
expression microarray experiments. A number of statistical models have been developed in the past decade
for this purpose based on Bayesian models and Monte Carlo methods (Bailey and Elkan, 1994; Hughes
et al., 2000; Lawrence et al., 1993; Lawrence and Reilly 1990; Liu et al., 2001; Liu et al., 2002; Roth
et al., 1998). They have been widely applied and found to be most successful in lower organisms such as
bacteria and yeast. However, in higher organisms such as the human, these methods may yield noisy results
because of the long noncoding regions and the large numbers of nonfunctional repeat elements (Lander
et al., 2001). A recent trend to improve upon these de novo methods is to incorporate the information from
cross-species comparisons.

The other major approach to predict transcription factor binding sites makes use of prior knowledge
on the binding sites. These methods evaluate individual candidate site sequences by their similarities to
clusters of experimentally determined binding sites (Chen et al., 1995; Hertz et al., 1990; Quandt et al.,
1995; Stormo and Hartzell, 1989; Wingender et al., 2000). These binding site sequences are most often
summarized using position-specific scoring matrices (PSSMs), which are used to summarize the sequence
patterns and to compare against candidate DNA segments. This is the approach of interest in this paper.

Various methods exist to score candidate segments for their similarities to known binding sites using
PSSMs. We provide an example in Fig. 1 using the transcription factor myogenin. PSSM construction
begins by using the alignment of known binding site sequences and tabulating the nucleotide distribution
matrix (Fig. 1a). The counts are then transformed using either of two related schemes, log-odds (Fig. 1b)
or entropy (Fig. 1c), to generate the PSSM. Candidate sites are scored against the PSSMs by summing
over the corresponding scores of the nucleotides across the site sequence; i.e., the score of candidate
site S = S§1...S, against PSSM is (w;ij)px4 is § = Zposi,ioni w;s;. In practice, these scores are then
compared to some predetermined cutoff values to generate computational TFBS predictions. Note that the
most widely used database of transcription factor binding, TRANSFAC (Wingender et al., 2000), is based
on entropy-weighted PSSMs.

While probabilities are used in the construction of the PSSMs, the scores themselves cannot be interpreted
statistically. This has led to the general difficulty with choosing the score cutoff values for each matrix, a
problem that may have contributed to the large numbers of false positive predictions seen in practice. We
propose a p-value based scoring scheme, which evaluates the statistical significance of the candidate site
segment. This should apply to both the entropy-based and the log-odds—based scoring methods. However,
in order to obtain a valid p-value, one needs to model the background sequence properly, which may serve
either as the “null model” or a component in computing the log-odds scoring function.

In this paper, we model the background sequences, or the “null distribution,” as a Markov chain. As
in previous methods, candidate binding site sequences are scored by PSSMs. Each score is evaluated
statistically by computing its p-value, that is, the probability that the background model can achieve a
score at least as high as that observed. In order to calculate this p-value, we develop an efficient and exact
algorithm based on probability-generating functions that can achieve up to 1000-fold speed up compared
to Monte Carlo simulations. We note that in contrast to score-based evaluation, the p-values we generate
can serve as a universal measure of statistical significance of all candidate binding sites regardless of their
corresponding binding factor or of their genomic locations.

It has been known that the effectiveness of a binding site in recruiting its corresponding transcription
factors can be dramatically affected by the genomic context that it is in. This can be attributed to a number
of factors such as the local DNA bending, the accessibility of the binding site, or the positive or negative
effects of neighboring TFBSs. We incorporate the local genomic context into the p-value-based scoring
method and develop the Local Markov Method (LMM). The p-value for a candidate site provides a measure
of its similarity to known binding sites and its contrast against the local genomic context. We first show
that the incorporation of the local genomic context can be advantageous in the prediction of myogenin and
MEF2 binding sites in the human genome, an advantage observed independently of the method of PSSM
construction. We further compare the abilities of LMM and TRANSFAC to pick up 101 experimentally
determined TFBSs from large tracts of human genomic sequences and find that LMM can identify TFBSs
with more specificity (50% fewer false positive predictions) without compromising sensitivity. The LMM
software is available upon request (www.biostat.harvard.ed€omplab/LMM).
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(a) Nucleotide count matrix
The number in each entry counts the frequency of each base A, C, G, or T, in the

corresponding position of the aligned binding sites

Position 1 2 3 4 5 6 7 8
A 4 2 0 9 0 0 0 0
c 0 2 9 0 0 4 0 0
G 5 5 0 0 8 4 0 9
T 0 0 0 0 1 1 9 0
(b) log-odds PSSM

For each position 7 and for each base x= A, C, G, or T, a log odds is calculated as

logM to derive the Durbin PSSM (Durbin et al. 1998), where 7z is the probability for
9,

observing base x at position 7 from the nucleotide distribution matrix, and 4 is the

probability of observing base x under a random model. The random model is often

estimated using a large collection of intergenic regions and applied to all instances of

candidate sites.

Position 1 2 3 4 5 6 7 8

A 0.49 -0.10 -1.70 1.24 -1.70 -1.70 -1.70 -1.70
C -1.70 -0.10 1.24 -1.70 -1.70 0.49 -1.70 -1.70
G 0.69 0.69 -1.70 -1.70 1.13 0.49 -1.70 1.24
T -1.70 -1.70 -1.70 -1.70 -0.61 -0.61 1.24 -1.70
(c) Entropy-weighted PSSM

The values in the PSSM are derived by weighting the counts in the nucleotide
distribution matrix at each position using a entropy-related information measure,

%(; Z (m(x)Inm,(x)+1n5), where ;s the probability for observing base x at
Grsar

position 7 from the nucleotide distribution matrix (Quandt et al. 1995).

Position 1 2 3 4 5 6 7 8

A 202 56 0 900 0 0 0 0

c 0 56 900 0 0 122 0 0

G 252 141 0 0 599 122 0 900

T 0 0 0 0 75 30 900 0

FIG. 1. The construction of a position specific scoring matrix for myogenin binding sites.

MAIN RESULTS

p-value calculation

In order to calculate the probability that a given Markov background model can achieve a score at least
as high as the observed score of the candidate site, we extend a previous method designed for a similar
purpose but applicable only to the independent and identically distributed (iid) background sequence
model (Staden, 1989). The key part for this method is the reformulation of the distribution of the score as
a probability-generating function which leads to an efficient algorithm for its computation. We formulate
the score probability-generating function under Markov models (detailed in the Detailed Methods section)
and derive an algorithm with time complexity linear in the length of the PSSM, a dramatic improvement
over the naive enumeration method which has time complexity exponential in the length of the PSSM.
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FIG. 2. TRANSFAC vs. local Markov model (LMM) in the identification of transcription factor binding sites (TFBSs)
in a given genomic sequence. (a) TRANSFAC scans a genomic sequence, generates similarity scores of each subse-
quence against a given PSSM, and uses three matrix-specific cutoffs FN, FP, and SUM to make putative calls. The three
sets of cutoffs attempt to minimize false-negative error, false-positive error, or the sum of these two errors, respectively.
(b) LMM begins by selecting the top 0.1% candidate sites based on their PSSM similarity scores, since sites with
low similarity scores are unlikely to be true binding sites. For each candidate TFBS, LMM models the DNA sequence
segment of length L (e.g., 1,000) centered around the target site as a homogeneous Markov chain of orders k = 0, 1,
2, or 3. Under the estimated Markov model, LMM calculates the probability distribution of the similarity score using
our algorithm. This distribution then allows us to assign statistical significance to the given candidate TFBS.

We implement the algorithm in C and incorporate the program into the local Markov method (LMM)
program to study TFBSs in situ by evaluating each candidate binding site with respect to its local genomic
context. A summary of the LMM method is in Fig. 2b. For comparison, we also describe in Fig. 2a the
prediction program which accompanies the TRANSFAC database.

To assess the efficiency of our algorithm, we compare it against Monte Carlo simulations. Our exper-
iments showed that the efficiency of our approach can be many times more efficient than Monte Carlo
simulation. For example, at p < 0.0001, a sequence of length at least 10° basepairs needs to be simu-
lated in order to obtain a sufficiently accurate cutoff value (relative error < 1%), which needs more than
1000-fold more computing time than our exact algorithm (Table 1).

APPLICATIONS

MYLI 3’ enhancer myogenin binding site prediction

In human, mouse, and rat, there is a well-conserved 200bp-long skeletal muscle-specific enhancer about
24 kb 3’ of MYL1 (Rosenthal er al., 1990; Wentworth et al., 1991). Three myogenic determination factor
binding sites A, B, and C are found in this region which are located 1267 bp, 1323 bp, and 1339 bp,
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TABLE 1. RUNNING TIME COMPARISON OF LMM WITH MONTE CARLO SIMULATION?

Significance Significance

atp <0.001 at p < 0.0001

Relative error Relative error

Time
Simulation (sec) Mean S.D. Mean S.D.
N =10 0.06 6.5% 4.3% 24.0% 16.9%
N =10° 0.6 1.7% 1.2% 7.7% 4.5%
N =10’ 5.7 1.0% 0.7% 2.6% 1.7%
N =108 57 1.0% 0.5% 2.0% 0.8%
N =10° 570 0.7% 0.6% 0.6% 0.4%
N =23 1228 0.6% 0.6% 0.6% 0.4%
LMM 0.43 0% 0%

4For 10 randomly chosen intergenic regions, we estimate a 2nd-order Markov model for each
sequence using maximum likelihood estimation. Under the 10 estimated Markov models, we use our
algorithm to derive and Monte Carlo simulation to estimate the score cutoffs of the p5S3 PSSM at two
significance levels, p < 0.001 and p < 0.0001, on a 1,500 MHz AMD Athlon machine running Linux.
To assess the difference between the cutoffs C), derived by our algorithm and the cutoffs C, estimated
by simulations, we consider the p-value F(Cp) attained by Cp and the true p-value F(Cp) of C)p
derived using our algorithm. We assess the relative errors of the simulation estimate by calculating
(F(Cp) = F(Cp))/F(Cp).

respectively, downstream of the last exon of MYL1 in the human genome. Sites A and B are myogenin/myf4
binding sites (Rosenthal et al., 1990), while site C is a MyoD binding site (Wentworth et al., 1991), also
considered to be a myogenin binding site (Fickett, 1996).

We applied the LMM to the 10,000 bp MYL1 downstream region (starting from the end of the last
exon) to derive the local p-values for each candidate. The local p-value for each candidate is the statistical
significance of observing its score (derived by both log-odds and entropy-related PSSMs) assuming that it
is generated under a local random model, where Markov models of different orders (e.g., 0, 1, or 2) are used
and with parameters estimated from the local 1,000 bp genomic sequence centered at the candidate. The top
10 score candidate sites derived using log-odds or entropy-weighted PSSMs are listed in Table 2a and 2b,

TABLE 2. INCORPORATING LOCAL SEQUENCE INFORMATION TO TRANSCRIPTION FACTOR BINDING SITE
PREDICTION USING TWO TYPES OF PSSMs FOR MYOGENIN IN THE HUMAN MYL1 3’ ENHANCER (a,b),
OR FOR MEF2 IN THE HUMAN PHOSPHOGLYCERATE MUTASE PROMOTER (c,d)?

(a) Using log-odds myogenin PSSMs

p-values of observed score under local background model

Position Log-odds
(bp from last PSSM 1st 2nd

exon of MYLI) score iid Markov® Markov Binding site
1267 (A) 556 0.000008 0.000017 0.000030 AGCAGGTG
1339 (C) 550 0.000015 0.000027 0.000055 GACAGGTG
1323 (B) 548 0.000033 0.000057 0.000112 ACCAGCTG
5434 556 0.000036 0.000074 0.000095 AGCAGCTG
2463 550 0.000059 0.000135 0.000179 GCCAGCTG
1235 531 0.000212 0.000354 0.000442 ACCATGTG
926 534 0.000181 0.000363 0.000468 TGCAGGTG
2574 536 0.000225 0.000416 0.000421 GGCAGATG
783 531 0.000274 0.000453 0.000537 AACATCTG
470 529 0.000404 0.000624 0.000731 GGAAGCTG

(continued)
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TABLE 2. (Continued)

(b) Using entropy-weighted myogenin PSSM

p-values of observed score under local background model

Position
(bp from last TRANSFAC 1st 2nd
exon of MYLI) score iid Markov® Markov Binding site
1267 (A) 4667 0.000008 0.000017 0.00003 AGCAGGTG
1339 (C) 4628 0.000018 0.000032 0.000059 GACAGGTG
5434 4667 0.000036 0.000074 0.000095 AGCAGCTG
1323 (B) 4581 0.000045 0.000077 0.000127 ACCAGCTG
2463 4628 0.000068 0.000152 0.000194 GCCAGCTG
2574 4596 0.000073 0.000177 0.000191 GGCAGATG
926 4463 0.000224 0.000414 0.000532 TGCAGGTG
7534 4377 0.000378 0.000534 0.000788 TACAGCTG
7156 4377 0.000346 0.00054 0.000686 CCCAGCTG
4895 4322 0.000829 0.001998 0.002045 CTCAGGTG
(¢) Using log-odds MEF2 PSSMs
p-values of observed score under local background model
Position Log-odds
(bp from last PSSM 1st 2nd
exon of MYLI) score iid Markov® Markov Binding site
-2970 669 0.000199 0.000160 0.000228 ATTTTAAATA
-3115 671 0.000209 0.000183 0.000243 GTTATAAATA
—161 649 0.000355 0.000183 0.000322 ATTTTAAGCA
—-2939 668 0.000233 0.000190 0.000266 TGTTTAAATC
-3151 663 0.000807 0.000655 0.000747 TGTTTAAGAA
—4767 656 0.000951 0.001009 0.001712 TTTTTATATA
—3433 649 0.003940 0.003099 0.003383 AAACTAAAAA
—-3566 644 0.005710 0.004913 0.005231 TTTTTAAAGC
-3214 643 0.007155 0.005654 0.006459 AGTTTATATC
-3577 641 0.007363 0.006312 0.006625 GGTTTAACAT
(d) Using entropy-weighted MEF2 PSSM
p-values of observed score under local background model
Position
(bp from last TRANSFAC 1st 2nd
exon of MYLI) score iid Markov® Markov Binding site
-2970 591 0.000103 0.000082 0.000133 ATTTTAAATA
—161 550 0.000191 0.000101 0.000174 ATTTTAAGCA
-3115 590 0.000206 0.000181 0.000243 GTTATAAATA
—-2939 554 0.001001 0.000807 0.001016 TGTTTAAATC
-3151 562 0.001091 0.000914 0.001083 TGTTTAAGAA
—-4700 531 0.001451 0.001451 0.001451 TTGTTAAAGA
—-3566 543 0.002961 0.002532 0.002676 TTTTTAAAGC
—3433 545 0.003271 0.002610 0.002788 AAACTAAAAA
—4444 532 0.003080 0.003200 0.004320 CATATAATTA
—3687 535 0.003761 0.003320 0.003671 GAAGTAAAGA

4Sorted in increasing order by column marked with *
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respectively, with the true sites A, B, and C labeled and shaded in gray, along with their local p-values.
We find the PSSM scores to be less sensitive a measure than the local p-value: the true sites A, B, and
C stood out under the local p-values, while they are not as distinct from the false predictions under the
PSSM scores.

PGAM-M MEF? binding site prediction

A major positive regulatory element is required for the muscle-specific expression of the muscle-specific
subunit of the human phosphoglycerate mutase (PGAM-M) gene (Nakatsuji et al., 1992). This element,
located 161 bp upstream of the gene, is found to be bound by the transcription factor MEF-2.

We applied the LMM to the 5,000 bp PGAM-M upstream region using the MEF2_Q6 PSSM to derive
the local p-values for each candidate. The top 10 score candidate sites derived using log-odds or entropy-
weighted PSSMss are listed in Tables 2c and 2d, respectively, with the true site labeled and shaded in gray,
along with their local p-values. We find that LMM behaves similarly as in the MYL1 enhancer.

Overall, from Table 2, we see that by taking into account the local sequence composition we have
reordered the candidate sequences in a way that is favorable to the true binding sites.

LARGE-SCALE VALIDATION

In order to evaluate the performance of LMM and to compare our local p-values to PSSM similarity
scores, we apply both LMM and TRANSFAC to 101 known binding sites in the human genome obtained
by mapping binding sites in the TRANSFAC database onto the human genome. We recorded and evaluated
the extent to which LMM and TRANSFAC can capture this large collection of known binding sites in the
human genome and the amount of noise generated in so doing.

In Figure 3a, the trade-off between sensitivity and noise is shown, in terms of the proportion of the
known binding sites detected and the amount of concomitant noise generated. Noise is measured by
the noise-to-signal ratio, which is defined as the number of binding site calls not known to be correct
divided by the number of known binding sites found. For comparison, we show the tradeoffs achieved by
TRANSFAC using its three matrix-specific similarity score cutoffs (FN, SUM, FP) along with that achieved
by LMM under Markov models of orders 0, 1, 2, and 3 at various p-value cutoffs starting at the stringent
p = 0.00001. From the inset graph, we see that at all levels of sensitivity, LMM outperformed TRANSFAC

@) (b)

LMM

TRANSFAC

=0.00001 p=0.0002

EN FP SUM:IID M1 M2 M3
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AllCalls 387w 58 516; 65 60 58 62 ;339 303 286 288
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Noiseto 456 38 89 17 130 13 1656 47 43 45
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Sensitivity 082 012 051023 026 025 024050 052 053 051
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FIG. 3. Large-scale validation of TRANSFAC and LMM: Tradeoff between sensitivity and noise. (a) We compared
the abilities of the two methods to detect the 101 known binding sites in the human genome by looking at their sensitivity
and noise-to-signal ratio. The balance of the tradeoff between these two measures achieved at various significance
levels by LMM are traced and compared to that attained by TRANSFAC. The inset graph shows the performance of
LMM and TRANSFAC across all levels of sensitivity. (b) Detailed results for p = 0.00001 and 0.0002.
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by producing significantly less noise. While the performance of LMM comes close to that of TRANSFAC
as the p-value cutoff increases, in fact, by then, for both methods, the advantage of increased sensitivity has
been nullified by the high level of accompanying noise, rendering them impractical. Overall, not only is the
sensitivity of LMM comparable to TRANSFAC, its noise-to-signal ratio is also vastly superior. It should
be noted that since only a limited number of true binding sites are known, not every unsupported binding
site prediction is necessarily a false-positive prediction. Thus, the noise-to-signal ratio overestimates the
true noise level, especially when stringent criteria are used to generate putative TFBSs with high sequence
similarity to known binding sites. As the criteria relax, the large numbers of predictions over and above
the known binding sites imply a high level of true background noise.

More detailed results for TRANSFAC using the three cutoffs and for LMM using different significance
cutoffs, 0.00001 and 0.0002, and under different Markov models are summarized in Fig. 3b. While the
FN cut off missed relatively few known binding sites, it generated more than 45 false-positive predictions
for every accurate binding site call. On the other hand, FP made fewer false positives, but it detected only
one in nine known binding sites. The SUM cutoff, designed as a balance of these inherent tradeoffs, did
strike a reasonable compromise, having generated about nine false positives for every real binding site and
detected more than half of the known sites.

At the stringent significance cutoff p = 0.00001, LMM detected about twice the binding sites than
did the FP cutoff and on average produced about 60% fewer false-positive predictions for every correct
prediction. At the more relaxed p-value cutoff p = 0.0002, the sensitivity of LMM is comparable to
that of the SUM cutoff while only half of the noise is generated. The binding sites that were detected
by LMM at p < 0.0002 but missed by TRANSFAC using the SUM cutoff include a MEF2 binding site
over the desmin gene, an ATF1 (activating transcription factor 1) binding site over the TGFB2 gene, a
HIF (hypoxia-inducible factor) binding site over the VEGF gene, and an ICSBP (IFN consensus sequence
binding protein) binding site over the OAS1 gene. We choose p = 0.0002 as the general significance cutoff
for the application of LMM to mammalian genomic sequences, a cutoff with a sufficiently high sensitivity
and an acceptable amount of noise. Overall, the LMM provides an advantageous tradeoff between noise-
to-signal ratio and sensitivity.

In our validation experiment, we found that Markov models of orders 1, 2, and 3 have better combinations
of high sensitivity and low noise than the iid model, confirming an earlier observation (Liu et al., 2001)
that Markov models can better capture the structure of biological sequences. In addition, we compared

Noise-to-signal

10 4

P
= Qlobal | i
8 - === 2ndorder LMM H

Sensltivity

FIG. 4. The use of local sequence context is advantageous. The performance of the second-order LMM is compared
against an analogous global Markov model with parameters estimated from a large collection of upstream regions.
The performance is assessed in terms of the noise-to-signal ratio and sensitivity. At the recommended p-value cutoff
0.0002, LMM is more sensitive and less noisy.
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the performance of the second-order LMM against an analogous global Markov model with parameters
estimated from a large collection of upstream regions, in order to assess the ability of LMM to model
the local sequence context information. We found that over the 101 known human TFBSs in situ, LMM
generally outperforms the global Markov model, while they behave similarly at high and low sensitivity
levels (Fig. 4). At high sensitivity levels, the lax p-value cutoffs produce large numbers of putative TFBS
calls, overwhelming the advantage enjoyed by LMM. At low sensitivity levels, the stringent p-value
cutoffs yield only putative TFBSs with undeniable sequence similarity to known binding sites. Thus, the
noise-to-signal ratio may not reflect the true noise level in this region.

DISCUSSION

The work presented in this paper attemps to identify TFBSs by considering simultaneously both their
similarity to the query PSSM and their differences from the local genomic context. Through the study
of the human TFBSs in TRANSFAC, we show that LMM, which makes putative TFBS calls using local
p-values, yields a much improved false-positive to true-positive ratio than that using the TRANSFAC or
log-odds scores alone.

It has been known that neighboring nucleotide compositions can affect the interaction between a tran-
scription factor and its binding site. To our best knowledge, however, there is no documented study on
whether and how much an improvement can be made on the PSSM-based TFBS detection using a local
background model. The result we present, which is based on more than 100 experimentally determined
TFBS sequences in the human genome, shows a clear overall advantage for incorporating the local se-
quence context into PSSM-based TFBS search. There are various biological mechanisms that can explain
this effect, which may lead to more complicated and more specific models. For instance, it may be that
the local 1,000 bp genomic region does not contain DNA sequences similar to the true binding site be-
cause otherwise the target transcription factor may be competed away from its biologically meaningful
binding site.

While this improvement does not in itself render a solution to the much more difficult problem of
detecting regulatory modules, by significantly reducing false-positive calls for single sites, the local p-
value approach will contribute substantially to any subsequent algorithms aiming to detect combinatorial
regulatory modules. The method we developed here is seen as a proof of principle and can be used as
a component of a more complex approach. For example, considering that clusters of binding sites also
often occur within small regions of about 200 bp to cooperatively recruit the transcription factors, a natural
future development of LMM would be to take this distance effect into the background estimation and
combine the LMM p-values of a few candidate PSSM sites. Many challenging problems in computational
biology, e.g., translation initiation site identification, splice site recognition, and RNA secondary structure
prediction, can be modeled in terms of the recognition of motifs. Our work may be adapted and extended
to these problems as well. However, it should be noted that when applied to protein sequences, which are
composed of a 20-letter alphabet, the performance of our algorithm may become an issue, especially when
the order of the Markov chain k is large.

DETAILED METHODS

Data extraction for large-scale validation

To evaluate the performance of the LMM, we apply it to known TFBSs in the human genome. Known
binding sites are extracted from the SITE table of the TRANSFAC database version 6.2. About half of the
12,262 binding sites in this table are experimentally derived from various species. The rest are generated
from in vitro binding assays on artificial nucleotide sequences. Since LMM studies binding sites with
respect to their genomic contexts, these artificial sequences, which do not correspond to any genomic
region, cannot be used for our validation study. Of the 6,073 in vivo binding sites, 1,425 sites are based
on the human genome. Of these, 149 (10.5%) are annotated with a corresponding PSSM. We use these
binding sites for validation.
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To locate the known TFBSs in the human genome, we focus on the 5,000 bp upstream sequences of all
genes. We made use of the annotations provided by Ensembl (Hubbard et al., 2002) and extracted 22,808
human gene promoters from the human genome assembly NCBI golden path 29 (www.ensembl.org/Homo_
sapiens). Since heuristic sequence-mapping algorithms do not perform well on short sequences such as
TFBSs, we use an exact-match algorithm based on suffix trees (Gusfield, 1997). We found that many binding
site sequences are precisely mapped onto the promoters of the correct target genes. For those binding sites
with mappings onto multiple promoters or with no mapping, we attempted to retrieve them by manual
review. To find the correct one among multiple mappings, we made correspondences between the Ensembl
gene name and the target gene name of the binding site as recorded by TRANSFAC. A review of some
missed matches using inexact match algorithms revealed a small number of single-basepair differences
between the recorded binding site sequences and the promoter sequences of the target genes, for example,
the binding site HS$ALBU_06 over the human albumin promoter. After validating against the primary
literature for the positions of these binding sites, we included these mappings as well. In total, we located
101 human TFBSs.

Local p-value calculation

Although the exact score distribution can be obtained by enumerating all possible binding site sequences
under any “null” model for the observed nucleotide base pairs, the computational cost for a PSSM of length
p is 47, Staden’s method (Staden, 1989), which turns this into an order-p computation, is based on the
PGF of the score under the simple null model that the base pairs are independent and identically distributed
(iid). Recently, however, there are some evidences suggesting that Markov background models work better
than the iid model for detecting TFBS (Liu et al., 2002). By extending Staden’s PGF method to dependent
random variables, we present here the derivation of the PGFs under a first-order Markov model, the basis
of the efficient algorithm for computing the exact score distribution.

Probability generating function derivation

In our study, we make use of the PSSMs constructed by TRANSFAC version 6.2. Given a PSSM
m = (w;j)px4, where i = 1,..., p and j = A,C,G,T, the match score S and the similarity score S/Syax
of a sequence D1 D; ... D, is defined as (Quandt et al., 1995)

P P P

S = E w;ip;, and S/Spax = E wjj / E max{wj;}.
X . . J
i=1 i=1 i=1

Let S be a random variable taking integer values; then its probability generating function, G (), is the
expected value of 5, G(f) is a polynomial, and the coefficient of the term " is the probability of the event
S = n (Gut, 1995).

Given a PSSM m of length p, under the assumption that the DNA sequence is iid, Staden pro-
vided the PGF of the match score in the form of a product of p polynomials (Staden, 1989): G(¢) =
[, Zj:A’C‘G’T fit"i, where f; is the frequency of letter j in the iid DNA sequence. For the first-
order Markov case, k = 1, let the transition matrix be P = (fy|g)4x4 and the stationary distribution of the
Markov chain be 7 (viewed as a four-dimentional row vector). Then the PGF under the first-order Markov
model is

p
Gy =n [ [®PMG. )1, (%)

i=1

where M (i,t) = Diag(t™i4, t¥ic t%ic ¥it) and I = (1,1, 1,1)7 (proof provided at the end of this
section).

Since a Markov chain of order k on set I' is equivalently a first-order Markov chain on the set I'*, with
a little modification on M (i, t), we can generalize the above results to k > 1. An example of PGF for
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k = 3 is in the online supplement (www.biostat. harvard.edutomplab/LMM). Using this representation for
the PGF, we developed and implemented an algorithm using C++- to calculate the exact score distribution.
Generally, for a kth-order Markov chain and a PSSM of length p, the time complexity of our algorithm is
O(4k - Smax - P), linear in the matrix length but exponential in the order of the Markov chain. The source
code is available upon request (www.biostat.hsph.harvard.edW'LMM).

Proof of equation (). For ease of notation and without loss of generality, we let p, the length of the
PSSM, be 3.

For a DNA sequence DjD;Ds3, its match score against PSSM m is wip, + wzp, + w3p,, and the
probability of the occurrence of DyD;Ds is fp, fp,p, fp;D,- By definition, the PGF of match score
against m is

w +w +w w w w
Z I, DD, [DyDyt P12 = Z I 7P - Dy D 17202 - fyp,t s
Dy,D;,D; Dy,D,,Ds

In the following, we derive the PGF in the alternative form of a product of p matrices. First,

w w w
Do Ioit"P e foyp " Syt "
Dy,D;, D3

Yo D far Ipiat P foyp, P2 - foyp, 1" s

Dy,Dy,D3 a

Dofar D ot foyp £ < fyip,t " s
a

Dy,D>,D;

= (fa, fe. fG. fr) - Z Foyat™ Pt fpoip 9202+ fp pytPs,

Dl,Dz,D3

w w w
D frt"P e foy 2 < fpy p, "
Dy,D,,D;

For the component of the second vector corresponding to base A,

w w w
Y fyat™ P fpyp, 1202+ fpypyt "
Dy,D;,D;

w w w
=D fouat™ - Y foypy "2 - foyp,t" s
D,

Dz,D3

= (fa1at™'", fc1at™'c, fc1at™'¢, friat™'m)

D Saal™ P [yt s,y Y [Tt [yt s

Dy, D; Dy, D3
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We apply similar arguments to the components corresponding to bases C, G, and T and obtain

w w w
> Fouct Pt - fpyp, 120 - fpy pyt "
Dy,D;,D;

= (faict™A, feict™€, fo|ct™'C, frict™7)

T
D foaat™ P2 - foypyt™Ps, 0 Y foyrt P2 - fpyp,t™is |
Dy, D; Dy, D;
D IiGE P foy 0,12 - fpyp,t ")
Dy,D;,D;
= (faict™", feict™'C, feigt™'¢, frigt™'")
T
Z FDy1at™?2 - fpyp, 1303, .., Z o, rt"?P2 - fpyp, 1305 |,
Dy,Ds D>,Ds
Yo foart P foyp P2 fiyip, "
DI,DZ,D3
= (fairt™, foirt™C, fort™'e, frirt™'7)
T

D foaat™ P - foypyt"™Ps 0 Y [yt P - fpypyt "

Dy,Ds Dy, D;

Therefore, for the first position, we have

w w w w w w
Z Iy At fpy D 172P2 - fpyp,t s, Z fort™'Pr - fp,p, 722 - fpyp,tiPs

Dl,Dz,D3 DI’DZ’DZS
fajat™a  fejat™c  foiat™c  friat™7\ (X p, b, [Da1at P2 oy pyt s
= faict™4 - feict™c feict™e  frict™'" . ZDZ,D3 sz\thznz fD3\D2lw3D3
faigt™4 feigt'c feict™'S  frigt™'T >_D,.0y ID21G1"*P2 [y Dy 1303
fart™a - fert™c  foirt™e  fript™r >0,y SDoITE"P2 Dy Dy 103

=P - Diag(t"'4, 1¥1¢ t¥1G ¥1T)

D foaat™P2 - fypyt "0, > [yt - fpyp,t s

Dy,Ds Dy, D;

=P- MU0 [ Y 041" - fogpytP s Y oyt - fiy by
D,.D; D, Ds
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Further, applying the above arguments to positions 2 and 3, we have

D ot foypyt™ s, Y foyrt - fpy byt s

D>, D; Dy, D;
T

=P Diag(t¥2A, 12¢ %26 W2t . Z ng\Alwm3 o Z ng\le3D3
D5 D5

=P. Diag(tw“, thc’ IWZG’ tw2T) .P- Diag(tw“, thc’ IWZG’ tw2T) . (1’ L 1’ 1)T
—P-MQ2,t)-P-M@3,t)-1.

Above all, G(1) = 7 [[/_,(PM (i, 0)1.
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