Figure 1: 95% CLCs for 10 and 50 GeV dark matter candidates interacting through an $n_i =$ standard operator. Comparisons are made to $\nu_i =$ standard, anapole, dipole, q^4, q^2, and q^{-2} operators. The colors represent the value of $\tilde{L}_{\text{min}}/\text{d.o.f.}$.
Figure 2: 95% CLCs for 10 and 50 GeV dark matter candidates interacting through an $n_i =$ anapole moment operator. Comparisons are made to $\nu_i =$ standard, anapole, dipole, q^4, q^2, and q^{-2} operators. The colors represent the value of L_{min}/d.o.f.
Figure 3: 95% CLCs for 10 and 50 GeV dark matter candidates interacting through an $n_i = \text{dipole moment operator}$. Comparisons are made to $\nu_i = \text{standard, anapole, dipole, } q^4, q^2, \text{ and } q^{-2}$ operators. The colors represent the value of $\tilde{L}_{\text{min}}/\text{d.o.f.}$
Figure 4: 95% CLCs for 10 and 50 GeV dark matter candidates interacting through an \(n_i = q^2 \) operator. Comparisons are made to \(\nu_i = \text{standard, anapole, dipole, } q^4, q^2, \) and \(q^{-2} \) operators. The colors represent the value of \(\tilde{L}_{\text{min}} / \text{d.o.f.} \)
Figure 5: 95% CLCs for 10 and 50 GeV dark matter candidates interacting through an $n_i = q^{-4}$ operator. Comparisons are made to $\nu_i =$ standard, anapole, dipole, q^2, q^{-2}, and q^{-4} operators. The colors represent the value of $\tilde{L}_{\text{min}} / \text{d.o.f.}$