Figure 1: 95% CLCs for 50 and 250 GeV dark matter candidates interacting through an $n_i = \text{dipole moment operator}$. Comparisons are made to $\nu_i = \text{standard, anapole, dipole, } q^4, q^2, \text{and } q^{-2}$ operators. The colors represent the value of $L_{\text{min}} / \text{d.o.f.}$.
Figure 2: 95% CLCs for 50 and 250 GeV dark matter candidates interacting through an $n_i = \text{dipole moment}$ operator. Comparisons are made to $\nu_i = \text{standard, anapole, dipole, } q^4, q^2, \text{ and } q^{-2}$ operators. The colors represent the value of $\tilde{L}_{\text{min}} / \text{d.o.f.}$.
Figure 3: 95% CLCs for 50 and 250 GeV dark matter candidates interacting through an $n_i = \text{dipole}$ moment operator. Comparisons are made to $\nu = \text{standard, anapole, dipole, } q^4, q^2, \text{ and } q^{-2}$ operators. The colors represent the value of $\tilde{L}_{\text{min}}/\text{d.o.f.}$.
Figure 4: 95% CLCs for 50 and 250 GeV dark matter candidates interacting through an $n_i = q^2$ dipole moment operator. Comparisons are made to $\nu_i = $ standard, anapole, dipole, q^4, q^2, and q^{-2} operators. The colors represent the value of $\tilde{L}_{\text{min}} / \text{d.o.f.}$
Figure 5: 95% CLCs for 50 and 250 GeV dark matter candidates interacting through an $n_t = \text{dipole moment}$ operator. Comparisons are made to $n_t = \text{standard, anapole, dipole, } q^2, q^{-2}, \text{ and } q^{-4}$ operators. The colors represent the value of $\bar{L}_{\text{min}} / \text{d.o.f.}$