Introduction to Structural \& Practical Identifiability
 Marisa Eisenberg
 University of Michigan, Ann Arbor

Identifiability

- Identifiability-Is it possible to uniquely determine the parameters from the data?

- Important problem in parameter estimation
- Many different approaches - statistics, applied math, engineering/systems theory

Identifiability

- Practical vs. Structural
- Broad, sometimes overlapping categories
- Noisy vs. perfect data
- Example: $y=\left(m_{1}+m_{2}\right) x+b$
- Unidentifiability - can cause serious problems when estimating parameters
- Identifiable combinations

Structural Identifiability

- Assumes best case scenario - data is known perfectly at all times
- Unrealistic!
- But, necessary condition for practical identifiability with real, noisy data

Structural Identifiability

- Reveals identifiable combinations and how to restructure the model so that it is identifiable
- Can give a priori information, help direct experiment design
- Global vs. local methods

Key Concepts

- Identifiability vs. unidentifiability
- Practical vs. structural
- Can be in between, e.g. quasi-identifiable
- Locally identifiable
- Identifiable Combinations
- Reparameterization

Reparameterization

- Identifiable combinations - parameter combinations that can be estimated
- Once you know those, why reparameterize?
- Estimation issues - reparameterization provides a model that is input-output equivalent to the original but identifiable
- Often the reparameterized model has 'sensible' biological meaning (e.g. nondimensionalized, etc.)
note about scaling

Methods we'll talk about today

- Differential Algebra Approach - structural identifiability, global, analytical method
- Fisher information matrix - structural or practical, local, analytical or numerical method
- Likelihood Profiling - structural or practical, local, numerical method

Simple Methods

- Simulated data approach
- If you have a small system, you can even plot the likelihood surface (typically can't though-more on this with profile likelihoods)

Analytical Methods for Structural Identifiability

Methods for Structural Identifiability

- Laplace transform - linear models only
- Taylor series approach - more broad application, but only local info \& may not terminate
- Similarity transform approach - difficult to make algorithmic, can be difficult to assess conditions for applying theorem
- Differential algebra approach - rational function ODE models, global info

Methods for Structural Identifiability

- Laplace transform - linear models only
- Taylor series approach - more broad application, but only local info \& may not terminate
- Similarity transform approach - difficult to make algorithmic, can be difficult to assess conditions for applying theorem
- Differential algebra approach - rational function ODE models, global info

Structural Identifiability Analysis

- Basic idea: use substitution \& differentiation to eliminate all variables except for the observed output (y)
- Clear (divide by) the coefficient for highest derivative term(s)
- This is called the input-output equation(s)
- Contains all structural identifiability info for the model

Structural Identifiability Analysis

- Use the coefficients to solve for identifiability of the model
- If unidentifiable, determine identifiable combinations
- Find identifiable reparameterization of the model?
- Easier to see with an example-

2-Compartment Example

- Linear 2-Comp Model

$$
\begin{aligned}
& \dot{x}_{1}=u+k_{12} x_{2}-\left(k_{01}+k_{21}\right) x_{1} \\
& \dot{x}_{2}=k_{21} x_{1}-\left(k_{02}+k_{12}\right) x_{2} \\
& y=x_{1} / V
\end{aligned}
$$

- state variables (x)
- measurements (y)
- known input (u) (e.g. IV injection)

2-Compartment Example

$$
\begin{aligned}
& \dot{y} V=u+k_{12} x_{2}-\left(k_{01}+k_{21}\right) y V \\
& \dot{x}_{2}=k_{21} x_{1}-\left(k_{02}+k_{12}\right) x_{2}
\end{aligned}
$$

2-Compartment Example

$$
\ddot{y}+\left(k_{01}+k_{21}+k_{12}+k_{02}\right) \dot{y}-
$$

$$
\left(k_{12} k_{21}-\left(k_{02}+k_{12}\right)\left(k_{01}+k_{21}\right)\right) y-u\left(k_{12}+k_{02}\right) / V-\dot{u} / V=0
$$

2-Compartment Example

$$
1 / V=a_{1}
$$

$$
\left(k_{12}+k_{02}\right) / V=a_{2}
$$

$\left(k_{01}+k_{21}+k_{12}+k_{02}\right)=a_{3}$
$\left(k_{12} k_{21}-\left(k_{02}+k_{12}\right)\left(k_{01}+k_{21}\right)\right)=a_{4}$

2-Compartment Example

$$
1 / V=a_{1} \Rightarrow V=1 / a_{1}
$$

$$
\left(k_{12}+k_{02}\right) / V=a_{2}
$$

$\left(k_{01}+k_{21}+k_{12}+k_{02}\right)=a_{3}$

$$
\left(k_{12} k_{21}-\left(k_{02}+k_{12}\right)\left(k_{01}+k_{21}\right)\right)=a_{4}
$$

2-Compartment Example

$$
1 / V=a_{1} \Rightarrow V=1 / a_{1}
$$

$$
\left(k_{12}+k_{02}\right) / V=a_{2}
$$

Unidentifiable

$\left(k_{01}+k_{21}+k_{12}+k_{02}\right)=a_{3}$
$\left(k_{12} k_{21}-\left(k_{02}+k_{12}\right)\left(k_{01}+k_{21}\right)\right)=a_{4}$

2-Compartment Example

$$
1 / V=a_{1} \Rightarrow V=1 / a_{1}
$$

$\left(k_{12}+k_{02}\right) / V=a_{2}$

Unidentifiable
$\left(k_{01}+k_{21}+k_{12}+k_{02}\right)=a_{3}$
$\left(k_{12} k_{21}-\left(k_{02}+k_{12}\right)\left(k_{01}+k_{21}\right)\right)=a_{4}$

2-Compartment Example

$$
1 / V=a_{1} \Rightarrow V=1 / a_{1}
$$

$\left(k_{12}+k_{02}\right) / V=a_{2}$

Unidentifiable

$$
\left(k_{01}+k_{21}-k_{12}+k_{02}\right)=a_{3}
$$

$$
\left(k_{12} k_{21}-\left(k_{02}+k_{12}\right)\left(k_{01}+k_{21}\right)\right)=a_{4}
$$

2-Compartment Example

$$
1 / V=a_{1} \Rightarrow V=1 / a_{1}
$$

$\left(k_{12}+k_{02}\right) / V=a_{2}$

Unidentifiable

$$
\left(k_{01}+k_{21}-k_{12}+k_{02}\right)=a_{3}
$$

$$
\left(k_{12} k_{21}-\left(k_{02}+k_{12}\right)\left(k_{01}+k_{21}\right)\right)=a_{4}
$$

2-Compartment Example

$$
\begin{aligned}
& \dot{x}_{1}=u+\underline{k_{12}} x_{2}-\left(\underline{k_{01}+k_{21}}\right) x_{1} \\
& \dot{x}_{2}=k_{21} x_{1}-\left(\underline{k_{02}+k_{12}}\right) x_{2} \\
& y=\underline{x_{1} / \underline{V}}
\end{aligned}
$$

$$
\text { Let } \underline{x}_{2}=k_{12} x_{2}
$$

$$
\dot{x}_{1}=u+\underline{x}_{2}-\left(\underline{k_{01}+k_{21}}\right) x_{1}
$$

Or add information

$$
\dot{\underline{x}}_{2}=k_{12} k_{21} x_{1}-\left(\underline{k_{02}+k_{12}}\right) \underline{x}_{2}
$$ about one of the parameters

Differential Algebra Approach

- View model \& measurement equations as differential polynomials
- Reduce the equations using grobner bases, characteristic sets,
 etc. to eliminate unmeasured variables (x)
- Yields input-output equation(s) only in terms of known variables (y, u)
- Use coefficients to test model identifiability

Differential Algebra Approach

- From the coefficients, can often determine:
- Simpler forms for identifiable combinations
- Identifiable reparameterizations for model
- But not always easy by eye-more on this in the next talk!

Numerical Methods for Identifiability Analysis

Numerical Approaches to Identifiability

- Analytical approaches can be slow, sometimes have limited applicability
- Wide range of numerical approaches
- Sensitivities/Fisher Information Matrix
- Profile Likelihood
- Many others (e.g. Bayesian approaches, etc.)

Numerical Approaches to Identifiability

- Most can do both structural \& practical identifiability
- Wide range of applicable models, often relatively fast
- Typically only local
- Less attention to the problem of identifiable combinations

Simple Simulation Approach

- Simulate data using a single set of 'true' parameter values
- Without noise for structural identifiability
- With noise for practical identifiability (in this case generate multiple realizations of the data)

Simple Simulation Approach

- Fit your simulated data from multiple starting points and see where your estimates land
- If they all return to the 'true' parameters, likely identifiable, if they do not, examine the relationships between the parameters
- Note-unidentifiability when estimating with 'perfect', noise-free simulated data is most likely structural

Parameter Sensitivities

- Design matrix/output sensitivity matrix
- Closely related to identifiability

$$
X=\left(\begin{array}{ccc}
\frac{\partial y\left(t_{1}\right)}{\partial p_{1}} & \cdots & \frac{\partial y\left(t_{1}\right)}{\partial p_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial y\left(t_{m}\right)}{\partial p_{1}} & \cdots & \frac{\partial y\left(t_{m}\right)}{\partial p_{n}}
\end{array}\right)
$$

- Insensitive parameters
- Dependencies between columns

Fisher Information Matrix

- FIM - $\mathrm{N}_{\mathrm{p}} \times \mathrm{N}_{\mathrm{p}}$ matrix
- Useful in testing practical \& structural ID represents amount of information that the output \mathbf{y} contains about \mathbf{P}
- Cramer-Rao Bound: FIM $^{-1} \leq \operatorname{Var}(\mathbf{p})$
- $\operatorname{Rank}($ FIM $)=$ number of identifiable parameters/combinations
- Identifiable Combinations

Fisher Information Matrix

- Special case when errors are normally distributed

$$
\left.\begin{array}{l}
F=X^{T} W X \\
W=\begin{array}{ccc}
\text { weighting } \\
\text { matrix }
\end{array} \\
\frac{\partial y\left(t_{1}\right)}{\partial p_{1}} \\
\cdots
\end{array} \quad \frac{\partial y\left(t_{1}\right)}{\partial p_{n}}\right)
$$

Design Matrix

Fisher Information Matrix

- For looking at structural ID, often just use

$$
X=\left(\begin{array}{ccc}
\frac{\partial y\left(t_{1}\right)}{\partial p_{1}} & \cdots & \frac{\partial y\left(t_{1}\right)}{\partial p_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial y\left(t_{m}\right)}{\partial p_{1}} & \cdots & \frac{\partial y\left(t_{m}\right)}{\partial p_{n}}
\end{array}\right)
$$

Identifiability \& the FIM

- Covariance matrix/confidence interval estimates from Cramer Rao bound
- e.g. large confidence interval —>probably unID
- Often can detect structural unID as 'nearinfinite' (gigantic) variances in Cov $\sim \mathrm{FIM}^{-1}$

Identifiability \& the FIM

- Rank of the FIM is number of identifiable combinations/parameters - can do a lot by testing sub-FIMs and versions of the FIM
- Identifiable combinations - can often see what parameters are related, but don't know form
- Interaction of combinations

Profile Likelihood

- Basic Idea:'profile’ one parameter at a time, by fixing it to a range of values \& fitting the rest of the parameters
- Gives best fit at each point
- Evaluate curvature of likelihood to determine confidence bounds on parameter (and to evaluate parameter uncertainty)

Profile Likelihood

- Choose a range of values for parameter pi
- For each value, fix p_{i} to that value, and fit the rest of the parameters
- Report the best likelihood/RSS/cost function value for that $\mathrm{pi}^{\text {value }}$
- Plot the best likelihood values for each value of p_{i}-this is the profile likelihood

Profile Likelihood

Profile Likelihood \& ID

- Can generate confidence bounds based on the curvature of the profile likelihood
- Flat or nearly flat regions indicate identifiability issues
- Can generate simulated 'perfect' data to test structural identifiability

Profile Likelihood

- Can also help reveal the form of identifiable combinations
- Look at relationships between parameters when profiling
- However, can be problematic when too many degrees of freedom

Likelihood Profiling Example

$$
\begin{aligned}
\dot{x}_{1} & =k_{1} x_{2}-\left(k_{2}+k_{3}+k_{4}\right) x_{1} \\
\dot{x}_{2} & =k_{4} x_{1}-\left(k_{5}+k_{1}\right) x_{2} \\
y & =x_{1} / V
\end{aligned}
$$

FIM Subset Approach

http://arxiv.org/abs/I307.2298

FIM Subset Approach

- Basic idea - evaluate the rank of the FIM for subsets of parameters to elucidate the structure of the identifiable combinations

- Can then combine this with profile likelihood approach by Raue et al. to determine the form of the combinations

FIM Subset Approach

- Use the FIM rank to select subsets of parameters which are nearly full rank (i.e. which become full rank if any single parameter is fixed)
- Use these subsets when likelihood profiling to determine all parameter relationships
- Polynomial interpolation to recover identifiable combinations

Example Model

$$
\begin{aligned}
\dot{x}_{1} & =k_{1} x_{2}-\left(k_{2}+k_{3}+k_{4}\right) x_{1} \\
\dot{x}_{2} & =k_{4} x_{1}-\left(k_{5}+k_{1}\right) x_{2} \\
y & =x_{1} / V
\end{aligned}
$$

Eisenberg \& Hayashi 2014, in review

Example Model

$$
\begin{aligned}
\dot{x}_{1} & =k_{1} x_{2}-\left(k_{2}+k_{3}+k_{4}\right) x_{1} \\
\dot{x}_{2} & =k_{4} x_{1}-\left(k_{5}+k_{1}\right) x_{2} \\
y & =x_{1} / V
\end{aligned}
$$

Example Model

$p_{1} p_{2}$

$$
p_{2}+p_{3}+p_{4}
$$

$p_{4}+p_{5}$

$$
p_{6}+p_{7} \quad p_{7}+p_{8}
$$

Eisenberg \& Hayashi 2014, in review

Example: Modeling Cholera

Cholera: SIWR Model

W = pathogen concentration in water reservoir

SIWR Model Equations

$$
\begin{aligned}
& \frac{d s}{d t}=\mu-\beta_{W} w s-\beta_{I} s i-\mu s \\
& \frac{d i}{d t}=\beta_{W} w s+\beta_{I} s i-\gamma i-\mu i
\end{aligned}
$$

$$
\frac{d w}{d t}=\xi(i-w)
$$

$$
\frac{d r}{d t}=\gamma i-\mu r
$$

Same process,

$$
y=k i
$$

SIWR Identifiability Results

- The scaled SIWR model is uniquely (globally) structurally identifiable for measurements of a portion of the infected population, $y=k i$.
- However, identifiability can be lost in the limit as pathogen lifetime decreases $(\xi \rightarrow \infty)$

Identifiability as $\xi \rightarrow \infty$

$\xi=0.01$

$\xi=100$

$\beta_{W}+\beta_{\text {I }}$ forms an identifiable combination

Practical Identifiability for the SIWR model

- Simple simulated data approach - simulate noisy data and see if you can estimate parameters
- Simulate data + noise
- Poisson, negative binomial, normal
- Repeated runs-how well do estimates match true values?

Poisson Noise

Poisson Noise

Poisson Noise

Water Info Improves Estimates

SIWR Identifiability Results

- SIWR model is uniquely structurally identifiable
- However, identifiability can be lost in the limit as pathogen lifetime decreases $(\xi \rightarrow \infty)$
- With noise, can also lose practical identifiability
- Adding water information can improve identifiability \& make it possible to estimate relative contribution of transmission pathways

Cholera \& the environment

Rainfall Data

- NASA TRMM Data satellite precipitation data (resolution $0.25^{\circ} \times$ 0.25°) averaged over each area
- USGS Rain Gauges in the Morne Gentilehomme and Foret de Pins regions

SIWR Model \& Rainfall

Eisenberg, Kujbida,Tuite, Fisman Tien, Epidemics 2013

Rainfall Forcing \& Identifiability

- Adding satellite rainfall data corrects the structural identfiability problem when $\xi \rightarrow \infty$
- Allows β_{W} and β_{I} to be estimated separately
- Can also improve practical identifiability

Eisenberg, Kujbida,Tuite, Fisman Tien 2013

Eisenberg, Kujbida,Tuite, Fisman Tien, Epidemics, 2013

Eisenberg, Kujbida,Tuite, Fisman Tien, Epidemics, 2013

Thank you!

- Suzanne Robertson (VCU), Joe Tien (OSU), Greg Kujbida, Ashleigh Tuite, \& David Fisman (UofT)
- Josh Havumaki, Rafael Meza, Michael Hayashi (UM)
- Nikki Meshkat \& Seth Sullivant (NC State)
- Hôpital Albert Schweitzer, UNWASH Cluster, PU-AMI, Solidarités, Chris Phares \& CDC
- Mathematical Biosciences Institute
- National Science Foundation (EEID Grant III588I)

Thls.

comic by Olivia Walch (UM):
http://imogenquest.net

