Mini-Colloquium

Soft Matter and Self-Assembly

Xiaoming Mao
Department of Physics, University of Michigan
(This talk will be posted on my website under the “Research” page)
Outline

• Introduction to **Soft Matter**

• **My research** on soft matter
 – Recent works
 – Future projects

• Introduction to **Self-Assembly**

• **My research** on self-assembly
 – Recent works
 – Future projects

• Welcome to **joining my group**!
 – Expectations on students
 – What I will offer you
What Is Soft Matter?

• “Condensed matter WITHOUT a periodic lattice structure”

The good old “three states of matter”

• Examples:
 — Liquids
 — Glasses (random packings of atoms)
 — Polymers (very long molecular chains)
 — Colloids (one phase dispersed in another phase. e.g. milk is liquid in liquid, smoke is solid in gas, …)

Solids without periodic lattices
Why Do We Study Soft Matter?

• Fundamentally interesting
 – Crystals are relatively well understood, BUT most materials in our daily life are not crystals
 – How do we understand, e.g., stability, transport, phase transitions, ..., when all atoms are in disordered positions?
 – More basic: where are the atoms? (how to characterize the disordered structure)
Why Do We Study Soft Matter?

• Soft Matter makes high-performance materials
 – Metallic glass
 → extremely strong materials
 – Rubber
 → extremely stretchable materials
 – Liquid crystals

• Soft matter is everywhere in Biology
What Do We Know about Soft Matter?

- A few important soft matter systems
 - Glasses
 - How are glasses formed
 - Is glass transition a true transition? Is there a universality class?

![Diagram showing temperature vs. volume for different states of matter, including crystal, supercooled liquid, and glasses 1 and 2.](image)

![Graph showing relaxation time \(\tau\) vs. temperature \(T\) with a decreasing curve from \(T_g\) to higher temperatures.](image)
What Do We Know about Soft Matter?

- A few important soft matter systems
 - Polymers
 - What do the long chains do at finite temperature?
 - How does that affect the solution? (quickly increased viscosity)
 - Solids formed from polymers: rubber, gels, ...

— Many more to list!
• Mechanical instabilities in soft matter
 – “whether you can deform it without costing energy”
 – Most soft matter are “soft” (easily deformable)
 – Even glasses have “floppy modes”
 – Mechanical instability plays a key role at the formation of solid state soft matter

Solid with mechanical stability Liquid without mechanical stability
The Isostatic Point

• How to characterize mechanical instability?
• Maxwell’s counting argument:
 \# of floppy modes = \# of degrees of freedom - \# of constraints
• Isostatic point:
 \# of degrees of freedom = \# of constraints
 onset of mechanical stability

Example: central-force square lattice
 \[z = 4 = 2d \]
Transitions at Isostaticity

ISOSTATIC POINT

Metallic glasses

Colloidal glasses

Granular matter

Foams

Emulsions

Fiber networks

Network glasses
One Recent Work

• How can we make an unstable system gain mechanical stability (disordered)

• Approach: lattice models with weak disorder
 – Analytic theory with controlled approximations, exact solutions
 – Two examples
Central-force square lattice
- Floppy modes with open boundary condition
- Floppy modes with periodic boundary condition
- Addition of random NNN bonds → remove floppy modes

- Effective medium theory + simulation
- Phonon Density of States

Debye DOS for homogeneous media
\[D(\omega) \sim \omega^{d-1} \]

Floppy modes at \(\omega = 0 \)
The Central Force Isostatic Point

• Agreement with real disordered systems

Nuclear inelastic scattering measurement of DOS of real glass

Chumakov et al., PRL 106 225501 (2011)
The Isostatic Point with Bending Forces

- Bending forces: more constraints
- Adding weak bending forces to a central force model: crossover

The Isostatic Point with Bending Forces

The cytoskeleton

Felt

Paper

Multiwalled carbon nanotube buckypaper
Summary of Our Research on Isostaticity

- Ordered
 - Kagome, Square
 - Twisted kagome
- Disordered
 - Jamming
 - Rigidity percolation

- Non-topological
- Topological
- Mean-field
- Non-mean-field

- Sierpinski triangle
- Penrose tilings
Future Projects on Soft Matter

Understand mechanical instability in presence of thermal fluctuations

Real experiments are done at finite temperature

\[T \]

\[K \]

Instability to other structures

Stable structure

Isostaticity, Mechanical instability, Floppy modes...

Inter-particle potential, Pressure, Density, External field...
Future Projects on Soft Matter

• Novel materials based on isostaticity

- Bulk modulus
 \[B = 0 \]

- Poisson’s ratio
 \[\sigma = \frac{B - G}{B + G} = -1 \]

• Negative Poisson’s ratio
• Holographic control

Potential value in materials science

Sun, Souslov, Mao, and Lubensky, PNAS, 109, 12369 (2012)
Future Projects on Soft Matter

General classification of structures near the isostatic point
Outline

• Introduction to **Soft Matter**

• **My research** on soft matter
 – Recent works
 – Future projects

• **Introduction to Self-Assembly**

• **My research** on self-assembly
 – Recent works
 – Future projects

• **Welcome to joining my group!**
 – Expectations on students
 – What I will offer you
What is Self-Assembly?

Bottom up approach to produce new materials

Spontaneous formation of ordered structures
Why Do We Study Self-Assembly?

- Easy way to produce large samples (in contrast to “Top down” approaches)
- Help us to understand how nature put itself together!
Categories of Self-Assembly

- Molecular self-assembly: chemistry, nano-technology
Categories of Self-Assembly

- Colloidal self-assembly: soft matter

Mao, Chen, & Granick, accepted by *Nature Materials*.
Categories of Self-Assembly

- Macroscopic self-assembly: mechanical engineering

Images: Whiteside group
Our Recent Work

• Open structures

Simple examples of open periodic lattices:

- kagome
- honeycomb
- diamond

Why it is interesting

- Structural Openness
- Controllable Flexibility
- Functions
Our Recent Work

- Open Lattices

- Applications in materials science
 - Photonics
 - Porous medium, catalyst

- Theoretical interest: floppy modes
 - Structural phase transitions
 - Negative thermal expansion
 - Negative Poisson ratio
 - Edge states

- Why it is difficult?

\[
\begin{align*}
kagome & : z = 4 = 2d \\
honeycomb & : z = 3 < 2d \\
diamond & : z = 4 < 2d = 6
\end{align*}
\]
Janus Particles and Degenerate Valency

- **Restore stability through thermal fluctuations?**
- **Janus particles:** *easy to realize in experiments*

![Janus particles](image)

- **Degenerate valency**
 - *no direct addition of constraints*

Collaborators: Steve Granick’s group at University of Illinois at Urbana-Champaign
Degenerate Ground States

Kagome

Twisted kagome

Roman mosaic

Hexagonal

Mao, Chen, and Granick, accepted by *Nature Materials*.
Preliminary Results: Rotational Entropy

\[\Delta \alpha = \left(\alpha - \alpha' \right)/2 \]

Floppy modes lifted to finite free energy

Mao, Chen, and Granick, accepted by *Nature Materials.*
Comparison with Experiment

- Bond-angle bending stiffness in lattice dynamics: \(\kappa = \frac{k_B T}{(\phi - 30^\circ)^2} \)
- Mode Structure:

Overlap with floppy modes: \(\langle \psi | \psi_0 \rangle \) 0 0.5 1

Mao, Chen, and Granick, accepted by Nature Materials.
Degenerate Ground States

120°

Kagome

Twisted kagome

Roman mosaic

Hexagonal

120°
Preliminary Results: Vibrational Entropy

Calculate free energy via Harmonic lattice dynamics

Floppier structure enjoys more vibrational entropy

Degenerate Valency

Selection of Open Structures

\[\kappa = \frac{k_B T}{(\phi - 30^\circ)^2} \]

Central force spring const. between NN pairs

Mao, Chen, and Granick, accepted by Nature Materials.
Preliminary Results: Phase Diagram

Kagome

Hexagonal

Rotational entropy

Mechanical stability

Vibrational entropy

Excess patch-size

Selection of Open Lattices

Mao, Chen, and Granick, accepted by *Nature Materials.*
Future Projects

Guidelines for 3D self-assembly
Future Projects

Controllable transitions of assembled structures → smart materials

(a)

Low B field: π rotation symmetry positive Poisson’s ratio, open photonic band-gap

(b)

High B field: broken π rotation symmetry negative Poisson’s ratio, closed photonic band-gap
Outline

• Introduction to Soft Matter
 • My research on soft matter
 – Recent works
 – Future projects

• Introduction to Self-Assembly
 • My research on self-assembly
 – Recent works
 – Future projects

• Welcome to joining my group!
 – Expectations on students
 – What I will offer you
What Do I Expect on Students?

• Enthusiastic about research interest in physics, future career path, ...
• Willing to work hard on difficult problems
• Previous training: statistical mechanics, solid state physics, etc
 – Analytical theory: field theoretical tools
 – Numerical simulations
What Do I Offer?

• My best effort to support students
• Help you to become **independent** in research
 – Good taste: “what problems should I work on?”
 – Deal with difficult problems: take many approaches + don’t give up too easily!
 – Skills you need to “sell your ideas”: presentations, writing papers, ...
 – Fresh experiences on career

My general strategy: try to be **ahead of the market**!
Thank You!