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Abstract. We describe a new variant of the MBO scheme for solving
the semi-supervised data classification problem on a weighted graph.
The scheme is based on the minimization of the graph heat content
energy. The resulting algorithms guarantee dissipation of the graph heat
content energy for an extremely wide class of weight matrices. As a result
our method is both flexible and unconditionally stable. Experimental
results on benchmark machine learning datasets shows that our approach
matches or exceeds the performance of current state of the art variational
methods while being considerably faster.

1 Introduction

Classifying high dimensional data is one of the central problems in machine
learning and computer vision. The graphical approach to these problems builds
a weighted graph from the data set and searches for an optimal partitioning of
the vertices into distinct classes. The search is driven by the goal of minimizing
the total weight of cut edges between adjacent vertices in different classes. To
avoid trivial solutions, it is necessary to impose certain constraints or penalties
on the segmentations. For example, one may penalize solutions that do not
give a reasonably uniform distribution of vertices among the different classes.
In general, solving graph partitioning problems with combinatorial penalties,
such as the normalized cut [12] or Cheeger cut [3], is known to be NP-hard.
The essential difficulty stems from the fact that one is attempting to minimize
a non-convex objective function. Nonetheless, approximate solutions have been
calculated using spectral clustering (for example [12], [21]), and more recently
fast implementations of gradient descent [10], [2].

In this paper we consider the semi-supervised learning (SSL) data classifica-
tion problem. In the SSL setting, the number of classes is known and a certain
training subset of the data is provided with the correct classification given. The
objective is to then classify the remaining points using the training data. The
SSL problem is highly amenable to variational methods. The training data can
be incorporated into norm or linear type penalty terms that are much easier to
solve than the combinatorial penalties of the unsupervised methods mentioned
above. Recent results in SSL have shown that variational methods are compet-
itive with artificial neural networks, while requiring far less training data and
computation time to obtain high quality solutions [9].



We approach the SSL problem using a variational model based on the weighted
graph cut. We then solve the model using a scheme closely related to the MBO
algorithm. The MBO algorithm was introduced by Merriman, Bence and Os-
her in [14] as an efficient algorithm for generating mean curvature flow of an
interface. The algorithm alternates between solving a linear diffusion equation
and pointwise thresholding. In Euclidean space, mean curvature flow arises as
gradient descent for minimal partition problems. Thus, it is naturally connected
to segmentation e.g. via the Mumford-Shah functional [16] and the many other
models it inspired (see chapter 25 in [19] for an exhaustive reference). As a result,
MBO type schemes have been used to solve a number of segmentation problems.
The authors of [7] derived an MBO scheme from the Ginzburg-Landau energy to
solve the piecewise constant Mumford-Shah functional. Building on the approach
of [7], the authors of [9] introduced a multiclass version of the Ginzburg-Landau
energy on graphs, and derived an MBO scheme for solving the SSL problem.

Recent theoretical developments in threshold dynamics [6], [5], [8] have led
to vast generalizations of the original MBO algorithm. The key to these new
developments is the heat content energy, which gives a non-local approximation
to the perimeter of a set [1], [15]. Generalizations of the heat content form a
family of energies, essentially indexed by diffusion kernels, that are Lyapunov
functionals for MBO type algorithms [6]. These energies give a natural and
principled way to extend MBO schemes to a wide variety of situations, including
segmentation problems on graphs.

This work represents the first exploration and extension of the theory devel-
oped in [6], [5], [8] to problems in machine learning and graph partitioning. Our
main contribution is two new MBO schemes for the SSL problem, GHCMBO and
GHCMBOS, based on the graph heat content energy (GHC) introduced in [8].
Our resulting schemes are novel in several ways. They generalize and simplify
previous graph MBO schemes [9], [13], allowing virtually any graph diffusion
process. GHC is a Lyapunov functional for our algorithms, thus we can guaran-
tee unconditional stability and convergence to a local minimum. We find that
our methods match or exceed the accuracy of other state of the art variational
methods for SSL, while being much faster, more flexible, and easier to code.

2 Background and Notation

2.1 The Graphical Model

We consider the SSL data classification problem over the structure of an undi-
rected weighted graph G = (V,W ). V is the set of data points, and the weight
matrix W : V × V → R is a symmetric matrix that describes the connection
strength between any two points.

The datasets we consider in this work are collections of real vectors embedded
in a high dimensional Euclidean space. A key assumption of machine learning is
that the data is concentrated near a low dimensional manifold. Our goal is to
reflect this manifold structure in our choice of weight matrix. Ideally, we would



like to weight points based on the geodesic distances between them, however
this information is not readily available to us and would lead to a very dense
weight matrix. Instead, we assume that the manifold is locally Euclidean, and
only compute the k nearest neighbors of each point in the Euclidean metric.
Computing just a small fraction of the distances ensures that W will be a sparse
matrix, which will be essential for the fast performance of our algorithms.

Under these assumptions a popular choice for the weights are the Zelnick-
Manor and Perona (ZMP) weight functions [22]:

W (x, y) = exp
(−dE(x, y)2

σ(x)σ(y)

)
(1)

where dE is the Euclidean distance and σ(x), σ(y) are local scaling parameters for
x, y respectively. We will construct our weight matrices using the ZMP weights,
where we set σ(x) = dE(x, xr) where xr is the rth nearest neighbor of x. To
recover a symmetric matrix we simply set W (x, y)← max(W (x, y),W (y, x)).

It will be useful for us to have a notion of an approximate geodesic distance
between points in the graph that are not nearest neighbors. With the structure
of the weight matrix, we may compute approximations to the geodesic distance
by traversing through paths in the graph. Let a path p in the graph be a sequence
of vertices {x1, . . . , xs} such that W (xi, xi+1) 6= 0 for every 1 ≤ i ≤ s − 1. Let
the length `q(p) of a path be

`q(p) =
( ∑

1≤i≤s−1

(− log(W (xi, xi+1)))q/2
)1/q

=
( ∑

1≤i≤s−1

(dE(xi, xi+1)√
σ(x)σ(y)

)q)1/q
(2)

Let π(x, y) be the set of all paths from x to y. Then the q-geodesic distance
between x and y, denoted dG,q(x, y), may be defined as

dG,q(x, y) = min
p∈π(x,y)

`q(p) (3)

Given any subset S ⊂ V the distances dG,q(x, S) = minz∈S d(x, z) may be effi-
ciently computed using pathfinding algorithms.

2.2 Semi-Supervised Data Classification

Given a set of data points V, a fixed collection of labels {1, . . . , N}, and a fi-
delity subset F ⊂ V of points whose labels are known, the semi-supervised data
classification problem asks to correctly label the remaining points in V \F . Any
solution of the problem is a partition Σ = (Σ1, . . . , ΣN ) of V where Σi is the set
of points that are assigned label i. An N -phase partition of V may be represented
as a function u : V → {e1, . . . , eN} where ei ∈ RN is the ith standard basis vec-
tor. The convex relaxation of this space is the set of functions u : V → SN , where
SN is the simplex

SN = {p ∈ [0, 1]N :

N∑
i=1

pi = 1} (4)



A point p ∈ SN can be interpreted as a vector of probabilities, where pi gives
the confidence that a point should be assigned label i. We will denote the correct
segmentation of the points as the function u∗.

Variational approaches solve the problem by finding minimizers of energies
of the form

E(u) = R(u) + Fid(u). (5)

Here R is a regularizing term that is typically some relaxation of the weighted
graph cut (6), and Fid is a term that incorporates the fidelity data F .

Cut(Σ) =
1

2

N∑
i=1

∑
x∈Σi

∑
y/∈Σi

W (x, y). (6)

Given some constants fi(x), we will assume throughout that Fid(u) has the
structure

Fid(u) =

N∑
i=1

∑
x∈V

fi(x)ui(x) (7)

3 The MBO Scheme

There are many possible relaxations of the weighted graph cut (6). Our approach
is to model the graph cut with the graph heat content energy (GHC) introduced
in [8]. The graph heat content is a family of energies indexed by the class of
affinity matrices, symmetric non-negative matrices A : V × V → R. Every affin-
ity matrix induces a (potentially unnormalized) diffusion process on the graph.
Given an affinity matrix A, the graph heat content of a function u : V → SN is

GHC(u) =
1

2

N∑
i=1

∑
x,y∈V

A(x, y)ui(x)(1− ui(y)). (8)

If the affinity matrix A is the weight matrix W then GHC is a relaxation of the
graph cut.

GHC is based on the continuum heat content energy (HC) defined in [6].
Given a translationally invariant m-dimensional domain D and a nonnegative
convolution kernel K the heat content of a function u : D → SN is

HCε(u) =
1

ε

N∑
i=1

∫
D

∫
Rm

ui(x)(1− ui(x+ εz))K(z)dzdx. (9)

In the special case that u is a partition, the term inside the sum measures the
amount of heat that diffuses out of phase i in time ε under the diffusion generated
by K. For small values of ε, the amount of heat that escapes is proportional to
the perimeter of phase i. Thus, the heat content gives a non-local approximation
to total variation on partitions.



The authors of [6] showed that the approximation of the heat content to total
variation becomes exact in the limit ε→ 0. In fact, as ε→ 0, the energy HCε(u)

Gamma converges in L1(D) to
∑N
i=1 ‖∇ui‖ when u is a partition and to ∞

otherwise. Therefore, as ε→ 0, minimizers of the heat content energy approach
partitions of minimal perimeter. This makes the heat content energy a natural
choice for segmentation problems.

3.1 MBO via Linearization of the Heat Content

We now derive an MBO scheme for minimizing energies of the form

E(u) = GHC(u) + Fid(u) (10)

following the approach developed in [6] for the continuum heat content. The
connection to the MBO algorithm can be seen by considering the variations of
GHC at a configuration u in the direction of ϕ.

GHC(u +ϕ) = GHC(u) +

N∑
i=1

∑
x∈V

ϕi(x)
∑
y∈V

A(x, y)(1− ui(y)) +Q(ϕ). (11)

where

Q(ϕ) = −
N∑
i=1

∑
x,y∈V

A(x, y)ϕi(x)ϕi(y) (12)

When A is PSD the quadratic term Q is always negative and GHC is concave.
Fid is linear, so E is also concave. Thus,

E(u +ϕ)− E(u) ≤
N∑
i=1

∑
x∈V

ϕi(x)
(
fi(x) +

∑
y∈V

A(x, y)(1− ui(y))
)

(13)

The right hand side of equation (13) is the linearization of E at the function
u. The concavity of E implies that we may obtain a configuration of lower
energy u + ϕ by minimizing the linearization over valid directions ϕ. The only
restriction on ϕ is that u + ϕ must be an element of the domain of E, i.e.
u(x) + ϕ(x) ∈ SN for all x. It will always be possible to find a valid direction
ϕ such that E(u + ϕ) < E(u), as long as u is not a local minimum of E. This
allows us to take extremely large steps through the configuration space, while
still dissipating the energy E.

Iterating the minimization procedure leads to the following algorithm, GHCMBO,
which is a graph analogue of the MBO scheme of alternating diffusion with point-
wise thresholding. Since the configuration space is compact, the above argument
implies that the iteration must converge to a local minimum of E. Our scheme’s
guarantee of energy dissipation and convergence represents a significant theoret-
ical advancement over previous graph MBO schemes for the SSL problem [9],
[13].



Algorithm 1: GHCMBO uk+1 is obtained from uk as follows:

1. Diffusion by A:

ψk+1
i (x) =

∑
y∈V

A(x, y)uki (y) for 1 ≤ i ≤ N (14)

2. Thresholding:

ik+1(x) = arg min
j

fj(x)− ψk+1
j (x). (15)

u(x) = eik+1(x) (16)

GHCMBO has several appealing properties that are apparent from the struc-
ture of the algorithm. The thresholding step (16) implies that the algorithm
produces a partition u : V → {e1, . . . , eN} at every iteration. Therefore, our vari-
ational method always produces a combinatorial solution. Furthermore, since uk

is always a partition, computing the vector ψk+1(x) =
(
ψk+1
1 (x), . . . , ψk+1

N (x)
)

requires just deg0(x) additions, where deg0(x) counts the number of nonzero
entries of A in row x. When A is sparse, this implies that each iteration has low
computational complexity. The combination of simple computations and large
step sizes makes GHCMBO an extremely fast algorithm.

To adapt GHCMBO to the problem at hand, we need to construct a PSD
affinity matrix A that is related to the weighted graph structure G = (V,W ).
The simplest choice is to take A = W 2. Another possible choice is the graph
heat kernel Ht = e−tL, where L is the symmetric normalized graph Laplacian
and t > 0. However, this adds a parameter t, and the heat kernel is typically not
sparse. Previous graph MBO schemes [9], [13] have been restricted to diffusion
by the heat equation and associated kernels. In addition to energy dissipation,
one of the chief advantages of our approach is the ability to more freely choose
a diffusion generated by a sparse matrix.

A natural question to ask is when can W itself be chosen for A. W is a
desirable choice, as W is the sparsest matrix that still retains the full structure
of the graph. Furthermore, when A = W the graph heat content is a relaxation
of the weighted graph cut. In general, one cannot expect that W as constructed
in (1) will be positive semi-definite. An example in [8] (with no fidelity term)
shows that for a given binary partition and a very natural nonnegative but
not positive semi-definite weight matrix, GHCMBO gets trapped in a 2-periodic
loop between two different configurations. One of the configurations has a higher
energy than the other, thus there are cases where A is not PSD and GHCMBO
both increases the energy and gets stuck in a non-productive loop.

It is possible however, to modify the algorithm so that the energy is guaran-
teed to decrease for a much wider class of matrices. In [8] it was shown that one
can guarantee dissipation of GHC for any affinity matrix A by computing convo-
lutions slightly more often. In particular, this implies that we may take A = W .
The key feature of this new scheme, GHCMBOS, is that only one phase is al-



lowed to shrink at a time. Although GHCMBOS has a more restrictive update
rule, arguments in [8] show that the algorithm does not terminate prematurely.
As long as the diagonal entries A(x, x) are strictly positive, GHCMBOS halts on
a configuration u if and only if u is a local minimum. The modified minimization
scheme GHCMBOS is given in Algorithm 2 below.

Algorithm 2: GHCMBOS uk+1 is obtained from a sequence
of substeps uk,` indexed by the labels 1 ≤ ` ≤ N , with uk,0 = uk

and uk+1 = uk,N . Then, uk,` is obtained from uk,`−1 as follows:

1. Diffusion by A:

ψk,`i (x) =
∑
y∈V

A(x, y)uk,`−1i (y) for 1 ≤ i ≤ N (17)

2. Restricted Thresholding:

ik,`(x) = arg min
j

fj(x)− ψk,`j (x). (18)

uk,`(x) = eik,`(x) if uk,`−1(x) = e` (19)

uk,`(x) = uk,`−1(x) otherwise (20)

At the `th substep the quantities (17-18) only need to be computed for x in the
`th phase. Thus, the complexity of a full step of GHCMBOS is comparable to the
complexity of a step of GHCMBO. In our experiments GHCMBOS runs faster
than GHCMBO (see Section 4). The sparsity of W as compared to W 2 offsets
any increase in the computational complexity of GHCMBOS.

3.2 A Fidelity Term Based on Graph Geodesics

Thus far, we have not described how to construct the fidelity term Fid(u) =∑N
i=1

∑
x∈V fi(x)ui(x) from the fidelity data F . The simplest way is to impose

a penalty on points whose labeling differs from the correct labeling, u∗, on F .
Thus, we may take fi(x) = λ(1−u∗i (x)) for x ∈ F and zero for all other x. When
λ is taken to infinity, the fidelity term becomes a hard constraint. We can easily
incorporate the hard constraint into the minimization algorithms GHCMBO and
GHCMBOS by simply not updating the points in the fidelity set.

If Fid(u) is only active on fidelity nodes, the correct labeling u∗ may be
difficult to find in the energy landscape, especially when the size of F is very
small compared to V. For example, if F is small, then the global minimum of
the energy will be near a partition that assigns all points outside of the fidelity
set to the same label. For this reason, we introduce a fidelity term that is active
on all of the nodes. Our approach is inspired by the region force in [20]. There
the authors introduce a linear penalty term where fi(x) is based on the diffusion
distance [4] between x and elements of the fidelity set with labeling i.



Our fidelity term instead uses the graph geodesic distance defined in equation
(3). For nodes in the fidelity set we use the hard constraint described above. For
x /∈ F , and some positive constant τ we take,

fi(x) = −τ exp
(
−dG,2(x, Fi)

2
)
. (21)

where Fi is the set of fidelity points labeled i. We find that our fidelity term out-
performs the diffusion distance fidelity term of [20]. On the MNIST data set, the
initialization produced by labeling x ∈ V \ F according to i(x) = arg minj fj(x)
is much closer to the correct labeling, when using (21) instead of the term in
[20] (see Table 4).

4 Experimental Results

We test the two variants of our scheme GHCMBO and GHCMBOS with the
fidelity term (21). In GHCMBO we take A = W 2, and in GHCMBOS we take
A = W . For all experiments we set τ = 0.1 in the fidelity term.

The algorithm stops whenever the relative energy change falls below some
threshold. If we let Ek denote the energy at the kth step then the algorithms end
when (Ek−Ek+1)/Ek+1 < η for some small positive η. In all of our experiments
we have set η = 10−6. The labeling on non-fidelity nodes x ∈ V \F is initialized
by setting i(x) = arg minj fj(x).

We test our algorithm on several benchmark machine learning datasets: Three
Moons, MNIST, Opt-Digits, and COIL. All experiments were run using C code
on a single core of an Intel i5-4250U processor at 1.30 GHz with 4GB RAM. k-
nearest neighbors were calculated using the kd-tree code in the VLFeat library.
Table 1 shows the timing information for constructing the weight matrices using
VLFeat. All of our subsequent timing results for GHCMBO and GHCMBOS
include the time it takes to calculate the fidelity coefficients fi(x) and run the
iterations (14-16) or (17-20). For every dataset we averaged our results over 100
trials at different fixed fidelity set sizes. In each trial, the points in the fidelity
set were chosen at random and the number of points in each class was allowed
to be random.

We compare our results to previous graph MBO schemes (MBO eigenvectors
[9], HKPR1/2 MBO [13]) and the total variation based convex method (TVRF
[20]). The results reported for the other methods are taken from their respective
papers.

4.1 Three Moons

The Three Moons synthetic data set consists of three half circles embedded
into R100 with Gaussian noise. The standard construction is built from circles
centered at (0, 0), (3, 0), (1.5, 0.4) with radii of 1,1, and 1.5 respectively. The first
two half circles lie in the upper half plane, while the third circle lies in the lower
half plane. The circles are then embedded into R100 by setting the remaining



98 coordinates to zero. Finally, Gaussian noise with mean zero and standard
deviation 0.14 is added to each of the 100 coordinates.

We construct the dataset by sampling 500 points from each of the three
circles, for a total of 1500 points. The weight matrix was built using the 15 nearest
neighbors with local scaling by the 7th nearest neighbor. We tested fidelity sets
of size 25, 50 and 75. Results for this dataset are recorded in Table 2. GHCMBO
and GHCMBOS outperform the methods of [20] and are comparable to the
accuracy of [9]. Both of our methods are nearly two orders of magnitude faster
than [9].

4.2 MNIST

MNIST is a database of 70,000 grayscale 28 × 28 pixel images of handwritten
digits (0-9). Each of the digits is centered and size normalized. We combine
them to create a single set of 70,000 images to test against. We perform no
preprocessing on the images.

The weight matrix is calculated using the 15 nearest neighbors with local
scaling based on the 7th nearest neighbor. We tested fidelity sets of size 150,
300, 450 and 2500. Results for this dataset are recorded in Table 3. GHCMBO
outperforms all of the other methods while being 1.8 to 4 orders of magnitude
faster. GHCMBOS is even faster than GHCMBO, but is less accurate at the
smaller fidelity set sizes.

In Table 4 we compare our fidelity term (21) with the diffusion distance
fidelity term used in [20]. Each point is labeled according to i(x) = arg minj fj(x)
and then the accuracy is measured without running any further algorithms. Our
fidelity term is significantly more accurate than the fidelity term in [20].

4.3 Opt-Digits

Opt-Digits is a database of 5620 handwritten digits [11]. The data is recorded
as an 8× 8 integer matrix, where each element is between 0 and 16.

We construct the weight matrix using the 15 nearest neighbors and local
scaling by the 7th nearest neighbor. We tested fidelity sets of size 50, 100, and
150. Results for this dataset are recorded in Table 5. Our methods are comparable
or superior to the results of [20].

4.4 COIL

The Columbia Object Image Library (COIL-100) is a database of 128 × 128
pixel color images of 100 different objects photographed at various different
angles [17]. In [18] the authors processed the COIL images to create a more
difficult benchmark set. The red channel of each image is downsampled to 16 ×
16 pixels by averaging over blocks of 8 × 8 pixels. The images are then further
distorted and downsampled to create 241 dimensional feature vectors. Then 24
of the objects are randomly selected and randomly partitioned into 6 different



classes. Discarding 38 images from each class leaves 250 images per class for a
total of 1500 points.

We construct the weight matrix using the 4 nearest neighbors and local scal-
ing by the 4th nearest neighbor. We tested fidelity sets of size 50, 100, and 150.
Results for this dataset are recorded in Table 6. Both GHCMBO and GHCMBOS
considerably outperform all of the other methods. In addition, our approaches
are anywhere from 200 to nearly 100,000 times faster than the other methods.

5 Conclusion

We have presented two MBO schemes, GHCMBO and GHCMBOS, for solving
the SSL problem on a weighted graph. Our schemes are based on the graph
heat content energy (GHC) and the theory developed in the series of papers
[6], [5], [8]. We solve the SSL problem by minimizing an energy that combines
GHC with a linear fidelity term based on graph geodesics, inspired by the region
force in [20]. GHC depends on the choice of affinity matrix A, which induces a
diffusion process on the graph. If A is PSD then GHCMBO decreases the energy
at every step, while GHCMBOS minimizes the energy for all affinity matrices.
Our approach considerably generalizes and simplifies previous SSL graph MBO
schemes [9], [13]. The guarantee of energy dissipation and convergence to local
minima is a new and important theoretical advance for SSL graph MBO schemes.

Experimental results on benchmark datasets shows that both GHCMBO and
GHCMBOS produce results with comparable or superior accuracy to other state
of the art methods [9], [13], [20]. In addition, our schemes were considerably
faster. Our slower algorithm, GHCMBO, was nearly two orders of magnitude
faster on every dataset. Our algorithms are so fast because we are free to choose
diffusions generated by extremely sparse matrices, and take very large step sizes
through the configuration space.

Unlike the basic MBO scheme, the new variants discussed in this paper ex-
tend to very general multiphase situations where the interaction between each
phase pair may be treated differently. In a future work we plan to apply this
idea to the SSL problem, using the fidelity data to learn the most favorable set
of pairwise interactions.
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6. S. Esedoḡlu and F. Otto. Threshold dynamics for networks with arbitrary surface
tensions. Communications on Pure and Applied Mathematics, 68(5):808–864, 2015.
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