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Abstract

We show how auction algorithms, originally developed for the assigment
problem, can be utilized in Merriman, Bence, and Osher’s threshold dy-
namics scheme to simulate multi-phase motion by mean curvature in the
presence of equality and inequality volume constraints on the individ-
ual phases. The resulting algorithms are highly efficient and robust, and
can be used in simulations ranging from minimal partition problems in
Euclidean space to semi-supervised machine learning via clustering on
graphs. In the case of the latter application, numerous experimental re-
sults on benchmark machine learning datasets show that our approach ex-
ceeds the performance of current state-of-the-art methods, while requiring
a fraction of the computation time.

1 Introduction

Threshold dynamics, also known as the MBO algorithm, is a very efficient algo-
rithm for approximating motion by mean curvature of an interface or network
of interfaces. Originally introduced by Merriman, Bence and Osher in [33], the
algorithm generates a discrete in time approximation to mean curvature mo-
tion by alternating between two simple steps: convolution with a kernel and
pointwise thresholding. The principal advantages of the algorithm are: implicit
representation of the interface as in the phase field or level set methods, allowing
for graceful handling of topological changes; unconditional stability, where the
time step size is restricted only by accuracy considerations; and very low per
time step cost when implemented on uniform grids.

The goal of this paper is to extend the MBO algorithm and its many ben-
eficial properties to multiphase volume constrained curvature motion. Volume
constrained curvature motion arises as L2 gradient descent for the perimeter of
sets functional with the additional proviso that each set must preserve certain
volume constraints. As a result, volume constrained curvature motion is cen-
tral to many interesting problems and applications; for example, finding equal
volume tilings of space with minimal surface area (still an open problem in 3
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dimensions), and volume constrained segmentation problems in computer vision
and machine learning.

We obtain our scheme by appealing to a variational framework for the MBO
algorithm developed by Esedoḡlu and Otto in [13]. The framework is based
on the heat content energy, a non-local approximation to the perimeter of sets
functional. Esedoḡlu and Otto showed that each step of the MBO algorithm
is equivalent to minimizing the linearization of the heat content at the current
configuration, which may be interpreted as a minimizing movements scheme for
the energy. This simple variational approach gives a powerful tool to generalize
threshold dynamics to a wide variety of situations, including curvature motion
of a multiphase network with non-constant surface tensions [13, 12, 15], segmen-
tation problems on graphs [45, 15, 23], and in this paper to volume constrained
curvature flow.

Applying the variational approach to our current situation essentially entails
minimizing linearizations of the heat content energy subject to certain volume
constraints. Interestingly, the resulting minimization problem is equivalent to
a famous combinatorial optimization problem, the assignment problem. The
assignment problem is a member of a special family of linear programming
problems known as minimum cost flow problems. These problems have many
practical applications, such as finding the most efficient route to transport goods
across a road network, and finding the best way to allocate resources among a
population.

There are many well-known algorithms for solving the assignment problem.
We choose to solve the problem using variants of the auction algorithm intro-
duced by Bertsekas in [5]. Our resulting scheme consists of alternating two
steps: convolution with a kernel, and assigning set memberships via an auction;
hence the name auction dynamics. There are many reasons for favoring the
auction approach. Auction algorithms are easy to code and have an intuitive
structure. In practice, the computational complexity of the auction step scales
similarly to the convolution step, thus preserving the efficiency of the original
approach. Furthermore, the auction mechanism can be generalized to handle
the most complex volume constraints, where each set must satisfy upper and
lower volume bounds.

The remainder of the paper is organized as follows. We conclude the intro-
duction with a summary of our contributions. Next, in Section 2, we give a
summary of previous work. In Section 3, we dive into the heart of the matter,
the auction dynamics algorithm. In particular, we give a detailed exploration of
the assignment problem and auction algorithms, and develop the auction vari-
ants needed for auction dynamics. With the algorithm in hand, we consider
two different applications of auction dynamics. In Section 4, we use auction
dynamics to compute several examples of volume preserving curvature flow in
two and three dimensions. We also provide numerical evidence that our scheme
converges to the correct motion in cases where an exact solution is known. In
Section 5, we apply auction dynamics to the semi-supervised learning problem,
a well-known clustering problem in machine learning. Finally, we wrap up the
paper with a brief conclusion in Section 6.
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Contributions

The following is a summary of the present paper’s contributions:

• We introduce auction dynamics: a highly efficient algorithm for computing
the dynamics of multiphase volume constrained curvature flow.

• In the course of deriving our algorithm, we show how highly efficient auc-
tion algorithms of Bertsekas et. al. can be utilized to solve an assignment
problem that naturally arises in Merriman, Bence, and Osher’s multi-
phase threshold dynamics scheme in the presence of constraints on the
volumes of individual phases.

In particular, our work establishes a natural role for auction algorithms
in simulating geometric motion, such as multi-phase volume preserving
motion by mean curvature – a connection that was previously unnoticed.

• For certain applications, such as semi-supervised machine learning, it is
more realistic to impose upper and lower bounds on the volumes of phases
than strict equality constraints. In Section 3.3, we present an extension of
the auction algorithm to assignment problems with inequality constraints.

In turn, the new auction algorithm yields a version of the MBO scheme
for approximately solving minimal partition problems with inequality con-
straints on the volumes of the phases.

• The new algorithms presented are unconditionally stable, and impose the
(equality or otherwise) volume constraints exactly at every iteration, re-
gardless of the time step size. Neither their complexity nor their accuracy
in satisfying the volume constraints depends on the smoothness of the in-
terfaces. As such, the algorithms are equally at home in Euclidean space
as they are on abstract graphs.

• In Section 4, the new algorithms are demonstrated on volume preserving
multi-phase motion by mean curvature in 2D and 3D. In some of the 3D
experiments with equal volume constraints on the phases, the new algo-
rithms are able to find the currently known best candidate for the minimal
equal-volume partition, the Weaire-Phelan structure, starting from a ran-
domly shifted cubic lattice as the initial condition.

• In Section 5, the new algorithms are demonstrated in the context of semi-
supervised machine learning via clustering (based on minimal partitions)
on graphs. On benchmark data sets such as the MNIST hand written
digits data set, the algorithms allow us to demonstrate that volume con-
straints, even in the form of fairly loose inequality constraints, result in
dramatic improvements in the accuracy of recognition. In addition, the
efficiency of the new algorithms means completing the recognition task in
a fraction of the time taken by alternative techniques.
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2 Previous Work

There are a number of related numerical schemes for volume preserving versions
of motion by mean curvature in the literature, mostly restricted to the two-
phase setting. Here, we briefly discuss the closest ones and highlight essential
differences.

Volume preserving mean curvature motion incurs the normal speed v⊥ =
κ − κ̄ for each phase with piecewise smooth boundary, where κ denotes mean
curvature and κ̄ its average over the boundary of that phase. A typical compu-
tational approach, e.g. in the level set [37] literature, is a literal implementation
of this normal speed, which entails approximating the mean curvature and its
average explicitly, see e.g. [38, 50]. As noted in [42], the approximation of
the average curvature especially is prone to inaccuracies and can lead to an
accumulation of errors. Instead, [42] notes that it can be regarded as a La-
grange multiplier for the volume constraint, the appropriate value of which can
be determined by e.g. a line search procedure so that the constraint is satisfied
exactly at the end of the time step; it then demonstrates how to implement this
in the two-phase setting using threshold dynamics, thus resulting in an uncon-
ditionally stable algorithm (unlike its level set counterparts). The convergence
of this scheme was studied in [28] along with a simple extension from [1] to the
multiphase case where only one phase must satisfy a volume constraint. In [43],
another explicit time stepping level set approach, the Lagrange multiplier is es-
timated in terms of the surface area and the mismatch in the constraint at the
beginning of a forward Euler time step. It is then observed that the constraint
is approximately satisfied in simulations in R2 and R3.

In this work, with an eye towards applications such as machine learning that
are formulated in the context of abstract graphs on which one may not speak
of let alone assume “smoothness” of interfaces, we seek unconditionally stable
algorithms that impose the volume constraint exactly, regardless of the time
step size, by computing the precise value of the Lagrange multipliers in the
multi-phase setting. In [12, 47], it is shown that in the two-phase situation, the
search for the multiplier in [42] can be replaced by a sort operation that allows
satisfying the volume constraint exactly, without assuming anything about the
interface, even in the context of clustering on graphs. In this paper, we present
a similarly efficient, robust, and exact algorithm in the full generality of the
multi-phase setting.

Threshold dynamics has been previously utilized for solving minimal par-
tition problems in several contexts. In computer vision, threshold dynamics
has been used for image segmentation in [14] via the Mumford-Shah model. In
machine learning, graph based analogues of threshold dynamics have been in-
troduced and used to solve the semi-supervised learning problem [4, 17] (see [32]
for additional applications). [45] formulates some of the theory in [13] in the
graph context, and [15, 23] contain some extensions that may be useful for that
setting. Finally, the effect of volume constraints on classification accuracy for
many of the benchmark data sets we present in Section 5 were recently explored
in [2] using different numerical methods.
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3 Auction Dynamics

Given a torus D = [0, 1]d, an N-phase partition Σ = (Σ1, . . . ,ΣN ) of D is a

collection of closed subsets Σi ⊂ D satisfying
⋃N
i=1 Σi = D and Σi ∩ Σj =

∂Σi ∩ ∂Σj . Our goal is to compute volume constrained curvature motion of the
network of interfaces {∂Σi∩∂Σj}i 6=j . To set the stage, the unconstrained motion
arises as L2 gradient descent for the potentially anisotropic surface energy:

E(Σ,σ) =
∑
i6=j

∫
∂Σi∩∂Σj

σij(n(x))dHd−1(x), (1)

where n(x) is the outward unit normal to a given interface at the point x, and
σij : Rd → R are the surface tensions, a collection of potentially anisotropic
norms, σij(n) = σji(n). We will restrict our attention to the special case where
the surface tensions σij are all constant multiples of the same norm (i.e. σij(n) =
cijσ(n) for some collection of constants c > 0). Under this assumption, it is
natural to impose a triangle inequality on the surface tension constants

cij + cjk ≥ cik for all i, j, k pairwise distinct, (2)

which in this case is equivalent to the lower semi-continuity of the surface energy
(1). Indeed, the failure of (2) implies that at any interface between phases i
and k one may decrease the surface energy (1) by adding an arbitrarily thin
layer of phase j. However, it is worth noting that the triangle inequality is not
necessary for the stability properties of our scheme.

The foundation of our approach is the variational framework for the MBO
scheme introduced in [13]. The framework is based upon a non-local approxi-
mation to (1), the heat content energy. The heat content energy is defined on
KN , the convex relaxation of the space of N -phase partitions of D,

KN = {u : D → [0, 1]N :

N∑
i=1

ui(x) = 1}. (3)

For some u ∈ KN , a convolution kernel K, a time step δt, and constants cij the
heat content is given by

HC√δt(u, c) =
1√
δt

∑
i6=j

cij

∫
D

ui(x)(K√δt ∗ uj)(x)dx (4)

where K√δt(x) = 1
(δt)d/2

K(x/
√
δt). If u is the characteristic function of a

partition Σ then as δt→ 0 the heat content energy converges pointwise to∑
i 6=j

cij

∫
∂Σi∩∂Σj

σK(n(x))dHd−1(x) (5)

where σK(n) =
∫
Rd |x · n|K(x)dx, thus explaining the connection between the

surface energy (1), the heat content (4), and the convolution kernel K [13]. See
[16] for explicit kernel constructions that induce a given surface norm σ.
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At the heart of [13] is the discovery that the MBO algorithm may be de-
rived by successively minimizing linearizations of the heat content energy. Let
Lδt(u, ·) be the linearization of (4) at some u ∈ KN . Then the authors of [13]
recover and generalize the MBO scheme by considering the following iteration

uk+1 = arg min
u∈KN

Lδt(u
k,u). (6)

We can see the connection to the MBO scheme by explicitly solving (6). Let

ψki (x) =
∑
j 6=i

cj,i(K √
δt ∗ u

k
j )(x), (7)

then up to a constant factor the linearization is given by

Lδt(u
k,u) =

N∑
i=1

∫
D

ψki (x)ui(x)dx. (8)

It is easy to see that the global minimum, uk+1 ∈ KN , is the characteristic
function of a partition Σ = (Σ1, . . . ,ΣN ) given by pointwise thresholding

Σk+1
i = {x ∈ D : i = arg min

1≤j≤N
ψkj (x)} for all 1 ≤ i ≤ N. (9)

When the surface tensions are constant (i.e. cij = c for all i 6= j), the steps (7),
calculating convolution values, and (9), pointwise thresholding, are precisely the
classic MBO algorithm.

We now wish to extend the variational framework of the heat content energy
to volume constrained MBO schemes. We begin by considering the simplest case
where each phase must satisfy a volume equality constraint. Suppose we have
a partition Σ where each phase has some volume m(Σi) = vi with respect to
the Lebesgue measure m on D. The natural approach is to solve iteration (6)
with the additional constraint that the volume of each phase must stay fixed.
Thus, the thresholding step is instead replaced with the following minimization
problem

arg min
u∈KN

N∑
i=1

∫
D

ψki (x)ui(x)dx s.t.

∫
D

ui(x)dx = vi. (10)

If we incorporate the volume constraints with a Lagrange multiplier λ, we see
that the solution to (10) is a partition Σ given by a λ∗ shifted thresholding

Σi = {x ∈ D : i = arg min
1≤i≤N

ψi(x)− λ∗i }, (11)

where λ∗ is the optimal Lagrange multiplier. It then follows essentially imme-
diately from [41] that the scheme is consistent with volume preserving weighted
curvature flow. Furthermore, if K̂ ≥ 0 and the surface tension matrix C defined
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in (12) is conditionally negative semi-definite (CNSD i.e. negative semi-definite
on the orthogonal complement of the vector of all 1’s)

Cij =

{
0 if i = j,

cij otherwise
(12)

then the scheme is also unconditionally stable [13]. In what follows, we will
assume that the surface tension constants c > 0 satisfy the triangle inequality
(2) and the CNSD matrix condition. These conditions admit a large class of
interesting surface tensions, including Read-Shockley surface tensions (see [13]
for a further discussion of admissible surface tension constants).

While the scheme thus far seems straightforward, computing the optimal
Lagrange multiplier λ∗ is nontrivial if N > 2. This task is particularly difficult
if one insists on solving for the Lagrange multiplier and the configuration Σ
simultaneously (as we do). Our approach is to connect (10) to the assignment
problem, a famous linear programming problem with efficient solutions. The
assignment problem is typically posed as a maximization problem; thus, as a
first step we will replace (10) with the equivalent problem (13)

arg max
u∈KN

N∑
i=1

∫
D

ai(x)ui(x)dx s.t.

∫
D

ui(x)dx = vi, (13)

where ai(x) = (1 − ψki (x)). However, rather than working with problem (13)
directly, we will consider a discretized version. Discretization is natural, as any
implementation of the scheme must be carried out on a finite grid. Discretization
also allows us to more clearly connect our approach to the assignment problem,
which is typically posed over a finite dimensional vector space. Let Dn =
{x1, . . . , xn} ⊂ D be some n point discretization of D. We discretize the volume
constraints by requiring each phase to occupy Vi points, where Vi are integers
chosen so that

∑N
i=1 Vi = n and the mass ratios Vi/n ≈ vi/m(D) are as close as

possible. Since the convolution values ai(x) = (1−ψki (x)) are smooth functions,
they have a well defined restriction to Dn. Finally, the discrete analogue of
KN is the set of functions {u : Dn → [0, 1]N :

∑N
i=1 ui(x) = 1}, which may

also be represented as {u ∈ [0,∞)n×N :
∑N
i=1 ui(x) = 1}. Using the latter

representation we arrive at

arg max
u≥0

N∑
i=1

∑
x∈Dn

aiui(x) s.t.
∑
x∈Dn

ui(x) = Vi,

N∑
i=1

ui(x) = 1. (14)

In this form, problem (14) can be viewed as a special case of a family of linear
programming problems. This family of problems stems from the minimum cost
flow problem, and includes famous problems such as the assignment problem,
the transportation problem and the maximum flow problem. We choose to
focus on the assignment problem, as it is the simplest of the problems and can
be solved with an intuitive economic approach.
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3.1 The assignment problem

Given two disjoint sets X and L of equal size r and a weight function w :
X × L→ R, the assignment problem seeks to find a one-to-one matching M =
{(x1, `1), . . . , (xr, `r)} of X and L (i.e. a bijection), such that the total weight
of the matching ∑

(x,`)∈M

w(x, `) (15)

is maximized. By representing the matching as a binary vector z, where z`(x) =
1 if (x, `) are matched and z`(x) = 0 otherwise, we can restate the assignment
problem as the following optimization problem

max
z:X×L→{0,1}

∑
x∈X

∑
`∈L

w(x, `) z`(x) s.t.
∑
x∈X

z`(x) = 1,
∑
`∈L

z`(x) = 1. (16)

If we relax the binary constraint on z, then (16) becomes the following linear
programming problem

max
z≥0

∑
x∈X

∑
`∈L

w(x, `) z`(x) s.t.
∑
x∈X

z`(x) = 1,
∑
`∈L

z`(x) = 1. (17)

It turns out that the relaxation is exact, and we may substitute (17) for (16).
This follows from the fact that the solution to a bounded and feasible linear pro-
gramming problem always includes a vertex of the feasible polytope. The relaxed
linear constraint set is the polytope {z ≥ 0 :

∑
x∈X z`(x) = 1,

∑
`∈L z`(x) = 1}.

The vertices of the polytope are precisely the vectors z whose entries are binary.
Observe that problem (14) is a special case of (17), with respect to a par-

ticular choice of weights w(x, `) . We can obtain (14) from a generic instance
of (17) by letting X = Dn, splitting L into N similarity classes {Si}Ni=1 each of
size Vi and setting w(x, `) = ai(x) for every ` ∈ Si. With those choices, (17)
becomes

max
z≥0

∑
x∈Dn

N∑
i=1

ai(x)
∑
`∈Si

z`(x) s.t.
∑
x∈Dn

z`(x) = 1,
∑
`∈L

z`(x) = 1. (18)

The second constraint may be rewritten as
∑N
i=1

∑
`∈Si

z`(x) = 1, thus if we
take ui(x) =

∑
`∈Si

z`(x) we have nearly reduced problem (18) to problem (14).
It remains to reduce the first constraint. It is clear that

∑
x∈Dn

z`(x) = 1 implies∑
x∈Dn

ui(x) = Vi. To get the other direction, notice that the assignment of a
person x to a particular object ` ∈ Si does not change the value of the problem –
it is enough to specify the matching at the level of equivalence classes. Therefore
problem (14) encodes the same information as problem (18) and we see that (14)
is a special case of (17).

For the remainder of the paper, we will focus on our special case (14) of the
assignment problem (see [6] for a similar discussion of the classic formulation
(17)). We will interchangeably represent matchings as vectors u in the feasible
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polytope and as partitions Σ = (Σ1, . . . ,ΣN ) of Dn. Our goal for the remainder
of this subsection is to develop an intuition for (14), and develop the necessary
setup for the auction algorithm in Section 3.2.

It is particularly instructive to give a practical interpretation of (14). Imag-
ine that each phase is an institution that offers a limited number of memberships.
For example, the phases may be gyms, or clubs, or different Costco locations,
etc. Imagine that the points x ∈ Dn are people, and each person would like
to become a member of some phase. No person wants to have a membership
in more than one phase, and each phase only has Vi memberships available.
Finally, imagine that the coefficients ai(x) represent how much person x wants
to be a member of phase i. Now we can think of the solution to the assignment
problem as the matching of people and phases that maximizes the total satisfac-
tion of the population. Ideally, each person would like to become a member of
their favorite phase. However, this is not possible if more than Vi people want
to be members of some phase i. The main difficulty of the assignment problem
is in understanding how to correctly handle these conflicts.

An interesting approach is to attempt to assign the memberships according
to a market mechanism. Imagine that each phase i has a membership price pi,
and if person x is a member of i then they must pay pi. This can help to resolve
conflicts by making the most popular phases more expensive. Assuming that
every person acts in their own best interest, x will want to buy a membership
at the phase offering the best value, i.e. x wants to be a member of any phase

i∗ ∈ ics(x,p) = arg max
1≤i≤N

ai(x)− pi. (19)

We are now led to a very interesting question: does there exist an equilibrium
price vector p∗ such that assigning memberships according to (19) gives a fea-
sible matching? The answer to this question is yes, and better yet the resulting
assignment is optimal.

The connection between the assignment problem and the equilibrium price
vector p∗ comes from the duality theory of linear programming. As it turns
out, the equilibrium price p∗ is in fact the optimal solution to the dual of the
assignment problem. In addition to the prices p, the dual problem introduces a
set of variables π (x) for each x ∈ Dn. The dual problem is

min
p∈RN , π ∈Rn

N∑
i=1

piVi +
∑
x∈Dn

π (x) s.t. π (x) + pi ≥ ai(x). (20)

Note that the optimal value of π is entirely determined by p. Given any p,
the best choice for π is to set π (x) = max1≤i≤N ai(x)− pi. This shows that
π (x) is exactly the value of the best deal offered to x by any phase.

Our earlier statements about the equilibrium price vector p∗ can be justified
by invoking the complementary slackness (CS) condition. According to CS, a
feasible assignment u and a feasible dual pair (p, π ) are optimal for their
respective problems if and only if
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∑
x∈Dn

N∑
i=1

ui(x)(pi + π (x)− ai(x)) = 0. (21)

Recalling the best choice for π , (21) implies that in the optimal matching,
every person is assigned a membership which satisfies the market strategy (19)
using the optimal price vector pc. This implies that the equilibrium price p∗
exists and p∗ = pc.

Now suppose that we have some price vector p which is not optimal for
the dual problem. By CS, it will not be possible to assign every membership
according to (19), there will necessarily be conflicts. However, we can attempt
to construct a partial assignment (partial matching). A partial assignment
matches a subset of people in S ⊂ Dn to phases {1, . . . , N} while ensuring that
no more than Vi people are assigned to any phase. A partial matching can be
represented as a partition Σ of S into N phases Σ = (Σ1, . . . ,ΣN ) such that
|Σi| ≤ Vi for every phase i. Given a partial matching Σ, if x ∈ Σi then it will be
notationally convenient to say that the pair (x, i) is in the matching. A partial
assignment Σ and a price p satisfies CS if for every phase i and every member
x ∈ Σi, the pair (x, i) satisfies (19).

The most efficient algorithms for the assignment problem have the same basic
structure. They generate a sequence of price vectors pk and partial matchings
Σk such that Σk and pk satisfy CS. Each stage of the algorithm either increases
the size of the partial matching (a larger subset of Dn matched) or improves
the prices (with respect to the dual problem value). Since CS is preserved at
every step, if the partial matching becomes a complete matching then it is an
optimal solution to the assignment problem.

We will solve the assignment problem using auction algorithms. Auction al-
gorithms have a simple intuitive structure, are easy to code, and have excellent
performance. The main advantage of auction algorithms over the well-known
Hungarian algorithm [27, 34] is that auction algorithms perform local modifica-
tions of Σk and pk at every step, whereas the Hungarian algorithm may need
to consider global modifications.

3.2 Auction algorithms

In [5], Bertsekas developed the auction algorithm for solving the classic assign-
ment problem (17). Since the original paper, Bertsekas and collaborators have
improved upon the computational aspects of the auction algorithm, and ex-
tended it to more general minimum cost flow problems (see [7] or [6] for an
exhaustive reference on auction algorithms). The most important references for
this work are [8] and [9]. In [8], Bertsekas and Castanon modified the auction
algorithm to more efficiently handle assignment problems with multiple identi-
cal objects as in (14). In [9], Bertsekas, Castanon, and Tsaknakis introduced
the reverse auction algorithm for asymmetric assignment problems, which we
will use in Section 3.3.

The basic idea of the auction algorithm is to drive price modifications and
augmentations of the partial matching by simulating an auction. In order to
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obtain a membership, each person x must submit a bid b(x) to the phase of their
choice. At the start of the auction, the price of a membership at each phase i is
set to a starting value p0

i according to some initial price vector p0. As in a real
life auction, if a person x submits a bid b(x) to a phase i, the bid must exceed or
match the current price pi. Using the CS condition (19), we can split the phases
into three sets, the high demand phases H, the weak demand phases W , and the
equilibrium phases E. The high demand phases i ∈ H have more than Vi people
who would like to purchase a membership, the weak demand phases i ∈W have
fewer than Vi people and the equilibrium phases i ∈ E have exactly Vi people.
Everyone who wants a low demand or equilibrium membership can submit a
bid and immediately be accepted into the initial partial matching, but there is
a conflict at the high demand phases. The conflict is resolved by choosing the
people who have submitted the largest bids. At any step of the algorithm, if
i is a high demand phase, then the set Σi consists of the Vi people who have
submitted the largest bids for phase i. As people submit bids, the prices of
the high demand phases will rise. Eventually, this will incentivize unmatched
people to switch their bid to a cheaper phase that may offer a better bang for
their buck. The algorithm terminates once all of the phases are in equilibrium.

We now discuss pricing and bidding strategies. Each phase is restricted to
setting one uniform membership price, regardless of how large individual bids
may be. Assuming that a phase does not want to lose members, the price should
be set to the amount that the least committed member is willing to pay. This
amount is the lowest bid that a phase received thus far. To make this strategy
consistent across all phases, assume that the empty spots in every weak demand
phase i ∈W are filled by phantom members who all bid the starting price p0

i .
Finding a bidding strategy that guarantees termination of the algorithm and

produces a complete matching satisfying CS turns out to be nontrivial. For a
given price vector p, if person x is a member of phase i then we must have
i ∈ ics(x,p) to satisfy CS. This suggests that in the course of the auction, an
unmatched person x should only submit bids to phases in ics(x,p). The subtlety
lies in the question, ‘How much should person x be willing to bid?’ Obviously,
x does not want to overbid, otherwise prices may rise and a different phase will
become optimal according to CS. The largest bid, b(x), that x can submit to
i∗ ∈ ics(x,p) while being guaranteed not to violate CS is

b(x) = pi∗ + (ai∗(x)− pi∗)− (ainext(x)− pinext), (22)

where
inext ∈ arg max

j 6=i∗
aj(x)− pj (23)

is x’s second most desirable phase. With this bid, x is willing to allow the price
of i∗ to increase to at most the gap in value between the best and second best
choice. While x is matched to i∗, the price pi∗ cannot increase beyond b(x).
Other prices are non-decreasing, thus for the duration that (x, i∗) is part of the
partial matching, this pair satisfies CS.

Unfortunately, this bidding strategy does not work. A problem occurs when
there are multiple optimal objects for x, i.e. when |ics(x)| > 1. If this happens,
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both i∗, inext ∈ ics(x,p) and thus the gap (ai∗(x)−pi∗)− (ainext(x)−pinext) = 0.
In this case, x is unable to raise the price of i∗. This situation may lead to a
price war. In a price war, multiple people compete for the same memberships
without ever raising the prices, trapping the algorithm in an infinite loop.

To circumvent this difficulty, one must relax the complementary slackness
condition. For a given price vector p and a small ε > 0, a matched pair (x, i)
satisfies the ε-complementary slackness condition (ε-CS) if

ai(x)− pi + ε ≥ max
1≤j≤N

ai(x)− pi. (24)

It is now possible to create a bidding strategy that preserves ε-CS and guarantees
that the algorithm will always terminate. As before, an unmatched x will only
submit bids to i∗ ∈ ics(x,p); however, now x can bid up to

b(x) = pi∗ + ε+ (ai∗(x)− pi∗)− (ainext(x)− pinext) (25)

without overpaying according to ε-CS. Since (ai∗(x)−pi∗)−(ainext(x)−pinext) ≥ 0
this ensures that pi∗ increases by at least ε. This mimics real life auctions where
any bid must be larger than the current price by at least some fixed amount.
Now, starting from any initial price vector p0, the algorithm will be guaranteed
to eventually terminate [5]. We now give our version of the auction algorithm,
which is equivalent to the “similar object” auction variant in [8]:

Algorithm 1: Membership Auction [8]

Input: ε > 0, volumes V , coefficients a, initial prices p0 and people
x ∈ Dn

Result: Final prices and complete ε-CS matching (Σ,p).
Initialization: For every i ∈ {1, . . . , N} mark all x as unassigned, set
p = p0, set Σ = ∅ ;

while some x is marked as unassigned do
for each unassigned x ∈ Dn do

Calculate ics(x,p) and choose some i∗ ∈ ics(x,p);
Set b(x) = pi∗ + ε+ (ai∗(x)− pi∗)− (ainext(x)− pinext);
if |Σi∗ | = Vi∗ then

Find y = arg minz∈Σi∗
b(z);

Remove y from Σi∗ and add x to Σi∗ ;
Mark y as unassigned and mark x as assigned;
Set pi∗ = minz∈Σi∗ b(z);

else
Mark x as assigned and add x to Σi∗ ;
if |Σi∗ | = Vi then

Set pi∗ = minz∈Σi∗ b(z);
end

end

end

end
return (Σ,p)

12



The output of the auction algorithm is a complete matching Σ satisfying
ε-CS, and the final auction prices p. Representing the matching as a binary
vector u and using ε-CS we may conclude

N∑
i=1

piVi +
∑
x∈Dn

max
1≤i≤N

[ai(x)− pi] ≤ nε+
∑
x∈Dn

N∑
i=1

ui(x)ai(x). (26)

Thus, by weak duality, the final assignment u is at most nε away from be-
ing optimal. In the special case where the coefficients ai(x) integers, an ε-CS
matching is actually optimal for any ε < 1

N [8].
We now give a quick sketch of the complexity. Assume that at the start

of the auction, the prices were initialized to zero and the partial matching was
empty. Let C = max

i∈{1,...,N},x∈Dn

ai(x) be the largest coefficient. Suppose in

the course of the algorithm that the price of some phase i exceeds C. If the
algorithm has not yet terminated, then there must be some low demand phase
with price zero. This implies that in the remainder of the auction, no person
x will ever bid on phase i again, since there must be a phase offering a better
value. Thus, we have an upper bound on the price of any phase. Suppose that
some phase i is currently priced at pi, and consider the number of bids required
to raise the price. The worst possible case occurs when every currently matched
member has bid exactly pi (such a situation is highly degenerate and rarely
appears in practical applications). In this case, it will take exactly Vi bids to
raise the price. The price must rise by at least ε; thus, we can conclude that the
algorithm will terminate after at most NV dC/εe bids, where V = max1≤i≤N Vi.

A straightforward implementation of the bidding steps in Algorithm 1 re-
quires O(V + N) operations. This can be sped up with special data struc-
tures. If we implement a priority queue for each Σi, we can complete a bid in
O(log(V )+N) operations. In all of our applications, V is several orders of mag-
nitude larger than N ; thus, this gives considerable savings. Combining this with
the estimate for the maximum number of bids, we can conclude the algorithm
has complexity O

(
NV (log(V ) +N)C/ε

)
. Note that due to the presence of the

constant C, this complexity is pseudo-polynomial rather than polynomial.
The complexity can be improved using the idea of epsilon scaling (noted in

[5] and analyzed in [19, 20, 21]). Suppose that (Σ′,p′) is a matching and a price
vector satisfying rε-CS for some r > 1. What happens if we use p′ as the initial
price vector when we run the auction algorithm with ε? Since any starting
price is admissible, the algorithm will still produce a matching and price (Σ,p)
satisfying ε-CS. However, if r is not too large, then we should expect that p′ and
p are not too different. This suggests that the auction will not need to modify
the prices very much, and thus the algorithm will terminate quickly. Epsilon
scaling takes advantage of this idea by running the auction multiple times with
successively smaller values of epsilon. The final price vector of the previous
run is used as the initial price vector in the next run. Typically, one takes the
sequence of decreasing epsilon values to be εk = C/αk for some integer α > 1,
stopping once εk <

δ
n for some small δ. Using ε scaling the complexity can be
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improved to a weakly polynomial bound. We refer our readers to [7] for the
exact details and bounds using ε-scaling. For the problems that we consider,
the complexity of the auction algorithm using ε-scaling appears to grow like
O
(
NV (log(V ) +N) log(nC/δ)

)
(see [6] or [7] for a heuristic explanation of this

behavior).
Now we are ready to give the auction dynamics algorithm, Algorithm 2.

Recall that our goal is to simulate the evolution of a configuration Σ under
volume preserving curvature flow for some time t = m(δt). As we saw in the
beginning of Section 3, we obtain a consistent and unconditionally stable scheme
by solving the iteration

Σk+1 = arg min
Σ

Lδt(Σk,Σ) s.t. |Σi| = Vi for 1 ≤ i ≤ N (27)

m times. This amounts to repeatedly taking convolutions of the configuration
Σk with a kernel K, and solving the assignment problem. As we have seen
above, we can solve the assignment problem efficiently using auctions. The
auction dynamics algorithm uses Algorithm 1 along with ε-scaling to quickly
and accurately obtain a solution. We give the algorithm below.

Algorithm 2: Auction Dynamics

Input: Discrete domain Dn, initial configuration Σ, surface tensions σ,
convolution kernel K, volumes V , time step δt, number of steps
m, auction error tolerance εmin, epsilon scaling factor α, initial
epsilon value ε0.

Result: Final configuration Σm

Initialization: Set Σ0 := Σ, set ε̄ = εmin/n;
for k from 0 to m− 1 do

Calculate the convolutions: ψk+1
i (x) =

∑
j 6=i σij(K

√
δt ∗ Σkj )(x);

Calculate the assignment problem coefficients: ak+1 = 1−ψk+1;
Initialize prices p = 0, and ε = ε0;
while ε ≥ ε̄ do

Run Algorithm 1 (Membership Auction):
(Σout,pout) = Membership Auction(ε,V ,ak+1,p, Dn);

Set p = pout;
Divide ε by α;
if ε < ε̄ then

Set Σk+1 = Σout;
end

end

end
return Σm

3.3 Upper and lower volume bounds

In addition to strict volume preserving curvature flow, auction dynamics can be
modified to allow the volume of each phase to fluctuate between some bounds.
This will be particularly useful in our applications to machine learning.
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Suppose that each phase i must have at least Bi members and at most Ui
members for some integers Bi and Ui. To ensure that the resulting problem is
feasible, we will require Bi ≤ Ui and

∑N
i=1Bi ≤ n ≤

∑N
i=1 Ui. We will then

need to solve the following modified version of the assignment problem:

max
u≥0

N∑
i=1

∑
x∈Dn

ai(x)ui(x) s.t.

N∑
i=1

ui(x) = 1, Bi ≤
∑
x∈Dn

ui(x) ≤ Ui. (28)

This version of the problem introduces some complexities that were not present
in (14) and will require a more sophisticated approach.

Previously, we examined and solved the assignment problem from the per-
spective of the people x ∈ Dn. The limited supply of memberships resulted in
competition between the people, which we resolved by introducing prices and
simulating an auction. The upper bounds fit nicely into this perspective. The
upper bounds indicate that each phase has a limited number of memberships.
However it is now possible that the total supply of memberships

∑N
i=1 Ui ex-

ceeds the number of people n. The upper bounds will still induce competition
between the people, but any oversupply of memberships means that the set of
equilibrium prices will be larger. This will add a wrinkle of difficulty, as not all
equilibrium prices will be dual optimal.

The lower bounds are fundamentally different and require a new perspective.
Indeed, if some person x sees that there is an available membership in their most
desirable phase i, they will immediately join i without caring if some other
phase j is deficient (i.e. |Σj | < Bj). Instead, we must think about the lower
bounds from the perspective of the phases. Imagine that each phase must sell
Bi memberships or they will go out of business. If a phase i is having trouble
attracting a sufficient number of people, it will have to introduce an incentive
ti to entice people to join. As a result, the lower bounds induce a competition
among the phases. Deficient phases will be forced to offer competing incentives
to attract the necessary number of members. Thus, in order to satisfy the lower
bounds, we will need to run a reverse auction [9] where the phases bid on the
people.

To properly understand the interaction between the prices and incentives,
we introduce the dual problem

min
p≥0,t≥0, π ∈Rn

N∑
i=1

piUi−tiBi+
∑
x∈Dn

π (x) s.t. pi−ti+ π (x) ≥ ai(x). (29)

As before, we will use the interplay between the primal and dual problems
to drive the search for the optimal solution. The key of course will be the
complementary slackness condition. The complementary slackness condition
for (28) and (29) states that an assignment u and dual variables (p, t, π ) are
optimal for their respective problems if and only if
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N∑
i=1

∑
x∈Dn

ui(x)(ai(x)− pi + ti − π (x))

+

N∑
i=1

pi(Ui −
∑
x∈Dn

ui(x)) +

N∑
i=1

ti(
∑
x∈Dn

ui(x)−Bi) = 0.

(30)

Recall that π is determined by p and t and is given by π (x) = max1≤i≤N ai(x)+
ti − pi. Now we can recognize that the complementary slackness condition has
a simple intuitive explanation. The first sum states that each person should
be assigned to the optimal phase based on prices and incentives (this should
feel familiar). The second sum states that phases charging membership prices
must have the maximum number of members Ui (i.e. no overpriced phases).
Similarly, the third sum states that the phases offering incentives must have the
minimal number of members Bi (i.e. no over-incentivized phases).

To ensure our auctions do not stall, we will once again turn to the ε-CS
condition. For this problem, we will say that a partial matching Σ and a price-
incentive pair (p, t) satisfy ε-CS if every matched pair (x, i) satisfies

ai(x)− pi + ti + ε ≥ max
1≤j≤N

aj(x)− pj + tj . (31)

As before, we can recognize this ε-CS condition as an ε relaxed version of the
first sum in (30). Unfortunately, the other two terms in (30) do not have useful
ε relaxations. As a result, we will need to carefully ensure that our auctions will
satisfy the other two terms exactly. We will say that a price p (an incentive t)
is admissible for a matching Σ if the second (third) term of (30) is satisfied.

We will solve (28) in two stages. First we will run Algorithm 3, a forward
auction algorithm similar to Algorithm 1, where the people compete for mem-
berships. This will produce a complete ε-CS matching satisfying the upper
bound constraints but possibly violating the lower bound constraints (we will
call this upper feasible). Algorithm 3 differs from Algorithm 1, as it simulta-
neously runs a mechanism to ensure that no phase is over-incentivized. Note
that this extra mechanism is only necessary if one wants to use ε-scaling. In
the absence of ε-scaling, phases cannot become over-incentivized as long as t is
initialized to 0. In the second stage we will feed the result of the first stage into
a reverse auction, Algorithm 4, where the phases compete for people. This will
produce an ε-CS matching that is both upper and lower feasible. In addition,
Algorithm 4 will have a mechanism to prevent phases from becoming overpriced
(this mechanism is necessary with or without ε-scaling). As a result, the final
output will be a complete and feasible ε-CS matching Σ with admissible prices
and incentives (p, t). This will be enough to conclude that Σ solves (28) with
error at most nε. In the special case that the coefficients a are all integers,
the argument used in [8] can be easily generalized to show that the solution is
optimal if ε < 1

N .
Algorithm 3 is a relatively straightforward adaptation of the similar object

auctions and the asymmetric assignment auctions found in [7]. On the other
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hand, Algorithm 4 appears to have a different structure than the reverse auctions
considered in [7]. Indeed, in our reverse auction we choose to work with prices
and incentives rather than the profit variable π . We find that working with
prices and incentives leads to a much faster runtime when N << n. Since both
algorithms are specialized for our current problem, we provide proofs that they
terminate and have the desired properties.

Algorithm 3: Upper Bound Auction

Input: ε > 0, bounds B,U , coefficients a, initial prices p0, initial
incentives t0 and people x ∈ Dn

Result: Prices p, admissible incentives t, and complete ε-CS matching
Σ satisfying upper bounds.

Initialization: Mark all x as unassigned, set d = p0 − t0, set Σ = ∅ ;
while some x is marked as unassigned do

for each unassigned x ∈ Dn do
Calculate ics(x,p) and choose some i∗ ∈ ics(x,d);
Set b(x) = di∗ + ε+ (ai∗(x)− di∗)− (ainext(x)− dinext);
if |Σi∗ | = Ui∗ then

Find y = arg minz∈Σi∗
b(z);

Remove y from Σi∗ and add x to Σi∗ ;
Mark y as unassigned and mark x as assigned;
Set di∗ = minz∈Σi∗ b(z);

else if |Σi| = Bi and di < 0 then
Find y = arg minz∈Σi∗

b(z);

Remove y from Σi∗ and add x to Σi∗ ;
Mark y as unassigned and mark x as assigned;
Set di∗ = min(minz∈Σi∗ b(z), 0);

else
Mark x as assigned and add x to Σi∗ ;

end

end

end
Set p = max(d,0), set t = max(−d,0);
return (Σ,p, t)

Proposition 3.1. Given initial prices and incentives p0, t0, and an empty
matching, Algorithm 3 produces an upper feasible ε-CS matching Σ with no
over-incentivized phases with time complexity O(NU(log(U) + N)(C + G)/ε),
where U = max1≤i≤N Ui and G = max1≤i,j≤N (p0

j − t0j )− (p0
i − t0i ).

Proof. Note that no phase can increase beyond Ui members, and no phase can
increase beyond Bi members as long as di < 0. Therefore, the algorithm will
not terminate until the matching is complete, upper feasible, and there are no
over-incentivized phases. Throughout the auction, the number of unmatched

17



people is non-increasing and the variable d is entrywise non-decreasing. The
monotonicity of these quantities allows us to use the same complexity argument
as in Algorithm 1. The above bound will then immediately follow, where the
factor G accounts for the prices and incentives not being initialized to zero.

It remains to show that the algorithm preserves ε-CS at every step. The
only place where this algorithm differs from Algorithm 1 is when a person x
wants to join a phase i, where |Σi| = Bi and di < 0. Let d,d′ be the values
before and after x is added. Since d′i ≤ miny∈Σi

b(y), every person matched to
i must satisfy ε-CS.

Proposition 3.2. Given the result of Algorithm 3, Algorithm 4 produces a
complete and feasible ε-CS matching Σ with no overpriced or over-incentivized
phases with time complexity O(n2N2(C + G)/ε) where G = maxi 6=j(p

0
j − t0j ) −

(p0
i − t0i ).

Proof. It is clear that the algorithm will not terminate until the matching is
complete and lower feasible, and there are no over-priced phases. The algorithm
will never add people to an already full phase i with |Σi| = Ui, thus the matching
stays upper feasible. A phase only offers incentives if it has fewer than Bi
members, and any phase that has offered an incentive will never have more
than Bi members. Thus, no phase will become over-incentivized.

Next, we show that Σ is a complete ε-CS matching at every step of the
algorithm. Consider what happens when a phase i∗ is modified. Let (Σ,d)
contain the values before the modification and (Σ′,d′) afterwards.

First, we consider the case where |Σi∗ | < Bi∗ . In this case, Σ′i∗ must now
have Bi points. Let xf be the last point added to i∗. If d′i∗ = di∗ , then ∆(xf ) < 0
and we can conclude that every person who had their membership switched to
i∗ strictly preferred i∗ over their previous membership. Since no other entry of
d changed, the new pair (Σ′,d′) still satisfies ε-CS. Otherwise, ∆(xf ) ≥ 0 and
d′i = di −∆(xf ) − ε. Clearly, everyone who was in Σi is even happier to be in
Σ′i∗ as d′i∗ < di∗ and other entries of d didn’t change. Next, we check the other
people whose membership didn’t change. Let y be some person y ∈ Σ′j for some
j 6= i∗. We need to show that max1≤i≤N ai(y) − d′i − ε ≤ aj(y) − d′j . Only d′i∗
is different, so it is enough to show ai∗(y)− d′i∗ − ε ≤ aj(y)− dj . By our choice
of xf , we have

ai∗(y)− d′i∗ − ε = ai∗(y)− di∗ + ∆(xf ) ≤ ai∗(y)− di∗ + ∆(y) = aj(y)− dj .

Finally, we check the people who were switched to i∗. Let z be one of those
people and suppose that z was previously matched to phase r. Since ∆(xf ) ≥
∆(z), we may conclude

max
i 6=i∗

ai(z)− d′i ≤ ar(z)− dr + ε = ai∗(z)− di∗ + ε+ ∆(z) ≤ ai∗(z)− d′i∗ .

Next, we consider the case where |Σi∗ | < Ui∗ and di∗ > 0. This case is
very similar; however, there is one additional thing that can happen. Namely,
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Algorithm 4: Lower Bound Auction

Input: ε > 0, bounds B,U , coefficients a, initial prices p0, initial
admissible incentives t0, complete (but possibly lower infeasible)
ε-CS matching Σ0

Initialization: Set d = p0 − t0, set Σ = Σ0 ;
Result: complete and feasible ε-CS matching and admissible prices and

admissible incentives (Σ,p, t).
while there exists some i with (|Σi| < Ui and di > 0) or (|Σi| < Bi) do

for each i∗ with (|Σi∗ | < Ui∗ and di∗ > 0) or (|Σi∗ | < Bi∗) do
for each x /∈ Σi∗ do

Let j be x’s current phase;
Calculate ∆(x) = (aj(x)− dj)− (ai∗(x)− di∗);

end
while (|Σi∗ | < Ui∗ and di∗ > 0) or (|Σi∗ | < Bi∗) do

Find x ∈ arg miny/∈Σi∗
∆(y);

if |Σi∗ | < Bi∗ then
Remove x from its current phase and add x to Σi∗ ;
if |Σi∗ | = Bi∗ and ∆(x) ≥ 0 then

Subtract ∆(x) + ε from di∗ ;
end

else
if ∆(x) + ε ≥ di∗ then

Set di∗ = 0;
else

Remove x from its current phase and add x to Σi∗ ;
if |Σi∗ | = Ui∗ and ∆(x) ≥ 0 then

Subtract ∆(x) + ε from di∗ ;
end

end

end

end

end

end
Set p = max(d,0), set t = max(−d,0);
return (Σ,p, t)

it is possible that d′i∗ can be set to zero before Σ′i∗ reaches Ui∗ members. As
before, let xf be the last person added to i∗ in the modification, and let yc =
arg miny/∈Σ′i

∆(y). If xf exists (possibly no one was added) then ∆(xf ) + ε <

di∗ ≤ ∆(yc) + ε. Similar arguments to the above now show that anyone in Σ′i∗
satisfies ε-CS. To check that every other person satisfies ε-CS it is enough to
show that yc satisfies ε-CS. Suppose that yc is matched to a phase j. Then

ai∗(yc)− d′i∗ ≤ ai∗(yc) + ∆(yc) + ε− di∗ = aj(yc)− dj + ε,
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which is enough to show ε-CS for yc. Thus, the algorithm preserves ε-CS.
Finally, we show that the algorithm terminates. Suppose that, for some i,

the quantity di decreases by more than 2(C + G) + ε from its starting value.
Since d0

i − G ≤ 0, it must be the case that |Σi| ≤ Bi. Immediately after di
is lowered to d0

i − C − 2G − ε, phase i must have exactly Bi members. If the
algorithm has not terminated, then there must be some j with more than Bj
members, and thus dj ≥ d0

j −G. For any x, we can then conclude that

ai(x)− di − (aj(x)− dj) ≥ ai(x)− aj(x) + d0
j − d0

i + 2C +G ≥ 0.

It then follows that |Σi| = Bi for the remainder of the auction, as it will always
be easier for other phases to incentivize people to leave phase j rather than
phase i.

Notice that the same person cannot switch phases N times unless one of the
entries of d has decreased. Thus, a phase i can enter a bidding stage at most
Nn times before di must decrease by at least ε. This gives us an upper bound of
2N2nd(C +G)/εe bidding stages before the algorithm terminates. Quickselect
can be used to find the k smallest values of ∆(x) in time O(n) regardless of k.
Thus, the worst case complexity of the algorithm is O(n2N2(C +G)/ε).

Both Algorithms 3 and 4 are compatible with ε scaling. The prices and in-
centives obtained from one iteration of Algorithms 3 and 4 together can be fed
into the next iteration. For the instances of (28) that we encounter, the com-
plexity of both algorithms using ε scaling appears to grow like O(nN(log(n) +
N) log(nC/δ)), where δ > 0 is the maximum error of the final solution.

With the upper and lower bound auction algorithms in hand, we can now
give the version of auction dynamics with upper and lower volume bounds,
described by Algorithm 5.

3.4 Auction dynamics with temperature

Finally, we conclude this section with a variant of the auction dynamics algo-
rithm that allows us to incorporate random fluctuations due to temperature.
There are several reasons to introduce temperature effects into auction dynam-
ics, two of these are:

• When using auction dynamics to solve minimal partition problems (e.g.
data segmentation in machine learning, optimal tessellations, etc.), tem-
perature can help the algorithm escape from local minima and find better
solutions.

• Low temperature levels can be added to auction dynamics to help avoid
degenerate auction coefficients (which slow down the algorithm) without
significantly changing the result.

In the classic threshold dynamics algorithm, one may incorporate temperature in
the style of rejection free Monte Carlo methods by randomizing the thresholding
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Algorithm 5: Auction Dynamics with Volume Bounds

Input: Domain Dn, initial configuration Σ, surface tensions σ, kernel K,
volume bounds B,U , time step δt, number of steps m, auction
error tolerance εmin, epsilon scaling factor α, initial epsilon ε0.

Result: Final configuration Σm

Initialization: Set Σ0 := Σ, set ε̄ = εmin/n;
for k from 0 to m− 1 do

Calculate the convolutions: ψk+1
i (x) =

∑
j 6=i σij(K

√
δt ∗ Σkj )(x);

Calculate the assignment problem coefficients: ak+1 = 1−ψk+1;
Initialize prices p = 0, incentives t = 0, and ε = ε0;
while ε ≥ ε̄ do

Run Algorithm 3 (Upper Bound Auction): (Σout1,pout1, tout1) =
Upper Bound Auction(ε,B,U ,ak+1,p, t, Dn);

Run Algorithm 4 (Lower Bound Auction): (Σout2,pout2, tout2) =
Lower Bound Auction(ε,B,U ,ak+1,pout1, tout1,Σout1);

Set (p, t) = (pout2, tout2);
Divide ε by α;
if ε < ε̄ then

Set Σk+1 = Σout2;
end

end

end
return Σm

step. The Monte-Carlo approach suggests randomly assigning each x to a phase
i with probability:

P(x ∈ Σk+1
i ) =

e−βψ
k+1
i (x)∑N

j=1 e
−βψk+1

j (x)
, (32)

where β = 1
T is the inverse temperature. In the limit as T → 0 one recovers the

original MBO algorithm.
Unfortunately this approach is not compatible with auction dynamics. The

volume constraints prevent us from assigning points independently. As a result,
we cannot introduce the randomness in the assignment step. Instead, we in-
troduce temperature before the assignment step by perturbing the coefficients
ai(x) = (1 − ψi(x)). Given some probability distribution X = X(0, T ) on the
reals with mean zero and variance T , we perturb each coefficient ai(x) by an
independent sample of X. This approach maintains the same basic properties
as the randomness strategy (32). As T → 0, we recover the original algorithm
and as T → ∞ the points are assigned to phases completely randomly. In our
implementations of temperature effects, we choose the random variables to be
normal random variables N(0, T ).
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Table 1: Error for the circles example

Time step / Total time t = 0.01 t = 0.02 t = 0.03 t = 0.04 t = 0.05
δt = 0.001 1.80 ∗ 10−4 4.27 ∗ 10−4 1.10 ∗ 10−3 2.16 ∗ 10−3 4.88 ∗ 10−3

δt = 0.0005 8.60 ∗ 10−5 2.74 ∗ 10−4 5.13 ∗ 10−4 9.78 ∗ 10−4 1.84 ∗ 10−3

δt = 0.00025 4.88 ∗ 10−6 6.85 ∗ 10−5 1.62 ∗ 10−4 3.46 ∗ 10−4 5.52 ∗ 10−4

The entries of the table give the error in the value of R1(t) computed by auction dynamics
for various step sizes δt and times t.

4 Experimental results for curvature flow

We demonstrate our auction dynamics algorithm by computing several exam-
ples of volume preserving mean curvature motion in two and three dimensions.
Since the focus of this work is to develop the necessary theory and algorithms for
the volume constrained case, we work with essentially the most basic implemen-
tation of auction dynamics with the exception of the following well-known and
simple trick to enhance the spatial resolution. The intermediate steps arising in
each iteration of auction dynamics yields a smooth level set function (given by
ψ−p) that can be used (via interpolation) to estimate the fraction of each grid
cell occupied by a given phase. This allows for a sub-pixel accurate represen-
tation of the characteristic functions of the phases. For applications requiring
greater efficiency or accuracy, one may turn to more sophisticated techniques
developed for threshold dynamics, e.g. [39, 40], which in principle extend to
auction dynamics as well.

4.1 Numerical convergence tests

We begin by demonstrating the accuracy of our method on two simple examples
of volume preserving curvature flow with explicit solutions. First we consider
the three phase example shown in Figure 1 on the periodic square [0, 1]2. The
red phase consists of two disjoint circles of different sizes, with radii r1 = 1/6
and R1 = 1/5 respectively. The blue phase is a translation of the red phase.
Under volume preserving curvature flow, the larger red and blue circles will grow
while the smaller circles shrink. Since the red and blue phases are identical, the
flow may be completely described by the coupled system of equations for the
radii of the two red circles:

R′1(t) =
R1(t)− r1(t)

R1(t)(r1(t) +R1(t))

r′1(t) =
r1(t)−R1(t)

r1(t)(r1(t) +R1(t))
.

(33)

The equations are valid until the smaller circle disappears, and the flow becomes
stationary. Using numerical integration on (33) we may compute the flow to
arbitrary precision.
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Figure 1: Three phase configuration on a periodic square. The red and blue phases consist
of two disjoint circles with different radii, R1 = 1/5 and r1 = 1/6. The green phase is the
complement of the union of all of the circles. Under volume preserving curvature flow the
two larger circles will grow, while the smaller circles will shrink until they disappear. The left
hand side shows the initial configuration, while the right hand side shows the configuration
at time t = .04.

Table 2: Error for the spheres example

Time step / Total time t = 0.008 t = 0.016 t = 0.024 t = 0.032 t = 0.040
δt = 0.004 1.64 ∗ 10−4 9.22 ∗ 10−4 2.00 ∗ 10−3 3.63 ∗ 10−3 5.28 ∗ 10−3

δt = 0.002 1.41 ∗ 10−4 4.90 ∗ 10−4 1.05 ∗ 10−3 1.80 ∗ 10−3 2.80 ∗ 10−3

δt = 0.001 1.08 ∗ 10−4 3.18 ∗ 10−4 5.88 ∗ 10−4 9.60 ∗ 10−4 1.43 ∗ 10−3

The entries of the table give the absolute error in the value of R2(t) computed by auction
dynamics for various step sizes δt and times t.

In Table 1, we compare the results of auction dynamics on the three phase
circle configuration to the (essentially) exact solution of (33) computed by nu-
merical integration. The entries of the table display the absolute error in the
auction dynamics value of R1(t) (the radius of the larger red circle) for various
step sizes δt and times t. As the step size δt decreases, the auction dynamics
solution becomes more accurate. The scheme appears to be first order accurate
in time which matches the truncation error analysis for the classical threshold
dynamics scheme.

Next, we consider an analogous three phase example on the periodic cube
[0, 1]3. The first phase consists of two disjoint spheres of radii r2 = 1/6 and
R2 = 1/5 centered at (1/4, 1/4, 1/4) and (1/4, 1/4, 3/4). The second phase is a
translation of the first phase by (1/2, 1/2, 1/2). As above, the dynamics of the
flow can be completely characterized as a coupled system of equations for the
radii of the spheres in the first phase (r2, R2) given by

R′2(t) =
R2(t) + r2(t)

R2(t)2 + r2(t)2
− 1

R2(t)

r′2(t) =
R2(t) + r2(t)

R2(t)2 + r2(t)2
− 1

r2(t)
.

(34)
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The equations are valid until the smaller sphere vanishes at which point the flow
becomes stationary.

In Table 2 we compare the results of auction dynamics on the three phase
sphere configuration to the (essentially) exact solution of (34) computed by
numerical integration. The entries of the table display the absolute error in
the auction dynamics value of R2(t) (the radius of the larger sphere in the first
phase) for various step sizes δt and times t. Again, we see that the scheme is
first order accurate in time.

4.2 Tessellations

We begin by considering two different equal volume tessellations of the torus.
In Figure 2, the starting configuration is 64 randomly shifted squares of equal
volume. After evolving under auction dynamics, the final configuration is a
hexagonal lattice, which has optimal isoperimetric quotient among all equal
volume tilings of the plane [22]. Thus, the algorithm finds the lowest energy
state as one would hope. A more interesting example is given in Figure 3. The
starting configuration consists of 17 equal volume rectangles. In the case of 17
subunits, it is impossible to tile the torus with hexagons [31]. Indeed, the final
configuration contains a heptagon and a pentagon. Nevertheless, most of the
shapes are hexagons and visual inspection suggests that all of the triple junction
angles are nearly 120 degrees. Therefore, the final configuration is a plausible
local minimizer of the interfacial perimeters.

Next, we consider random Voronoi diagrams in 2 and 3 dimensions. Figure
4 depicts the evolution of a random Voronoi diagram in the plane. The network
immediately undergoes topological changes – all of quadruple junctions in the
initial configurations split and form triple junctions. Figure 5 shows the evolu-
tion of a single “grain” in a random Voronoi diagram in 3 dimensions, Figure
6 shows the same grain and several of its neighbors at the final time. One can
clearly see many topological changes in the faces of the grain. Quadruple junc-
tions split and collide throughout the evolution. Both examples clearly show
that one must anticipate topological changes in the course of the flow.

Finally, we consider equal volume tilings in 3 dimensions. Our starting con-
figuration is a randomly shifted cubic lattice with 8 phases. Unlike the two
dimensional case above, where the flow easily found the optimal solution, the
3 dimensional energy landscape appears to be littered with local minima. Re-
gardless of how the cubes are shifted, the configuration evolves to a final state
where each grain assumes the shape shown in Figure 7 – a 12 sided polytope
built from 4 trapezoids, 4 rhombi, and 4 hexagons. A simple calculation shows
that the isoperimetric quotient of this structure is considerably worse than sev-
eral well-known tilings of 3-space. On the other hand, if we run the flow in
the presence of temperature, the random fluctuations allow us to escape the
local minima. Figure 8 shows an experiment with temperature where the final
configuration assumes the structure of what is thought to be the most efficient
partition of 3-space, the Weaire-Phelan structure [46]. This experiment suggests
that auction dynamics with temperature may be a very useful tool for exploring
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Figure 2: Initial condition: Randomly shifted 8 columns of 8 squares that have
identical areas. Periodic boundary conditions.

minimal tilings in 3 dimensions.

5 Semi-Supervised Learning

Given a set of data points {x1, . . . , xn} = V ⊂ RD, a fixed collection of labels
{1, . . . , N}, and a small training subset F ⊂ V of points whose ground-truth
labels are known, the semi-supervised learning (SSL) problem asks to correctly
label the remaining points in V \ F . Any solution to the problem is a partition
Σ = (Σ1, . . . ,ΣN ) of V where Σi is the set of points that are assigned label i.

For many real life data sets, information about the sizes of the various classes
is often available in advance. For example, the distribution of digits in postal
codes and tax returns is very well-known. As a result, we will further assume
that each phase should satisfy certain provided volume equality or volume bound
constraints. As we will see in Section 5.3, incorporating class size information
improves classification accuracy, especially when the training set is small (i.e.
|F | << |V|). Notably, there is still a marked improvement even when one can
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Figure 3: Initial condition: Randomly shifted 17 rectangles that have identical
areas. Periodic boundary conditions. After a long time, there is still one phase
with five and another with seven neighbors.

only estimate very rough size bounds.

5.1 Variational and graphical models

Variational models for the SSL problem find solutions by minimizing energies
of the form

E(Σ) = R(Σ) + Fid(Σ) (35)

where R is a regularizing term favoring “smooth” partitions and Fid is a penalty
term which incorporates information from the training data F . We will modify
this model slightly and only consider the regularizing term R. To incorporate the
training data F and class size information we will simply impose the constraints

Bi ≤ |Σi| ≤ Ui, Fi ⊂ Σi for all 1 ≤ i ≤ N (36)

where Bi and Ui are upper and lower bounds on the class sizes and Fi ⊂ F is
the set of training points labelled i.
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Figure 4: Initial condition: Voronoi diagram of 160 points taken uniformly at
random on [0, 1]2. Periodic boundary conditions. Each phase preserves its initial
area.

In order to define R, we need to give a notion of “smoothness” for partitions
of V. To do so, we give V the structure of a weighted graph G = (V,W ). The
weight matrix W : V ×V → R is a symmetric matrix where the entries W (x, y)
describe the how strongly the points x and y are connected. With this structure,
R is typically taken to be some variant of the weighted graph cut:

Cut(Σ) =
1

2

N∑
i=1

∑
x∈Σi

∑
y/∈Σi

W (x, y), (37)

which penalizes partitions which place strongly connected points in different
classes. Combining the graph cut with the constraints (36) we will find solutions
to the SSL problem by solving:

arg min
Σ

1

2

N∑
i=1

∑
x∈Σi

∑
y/∈Σi

W (x, y) s.t. Fi ⊂ Σi, Bi ≤ |Σi| ≤ Ui. (38)
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Figure 5: One “grain” from a total of 32. Initial condition: Voronoi diagram of
32 points taken uniformly at random on the 3-torus. Each phase preserves its
initial volume.

5.2 Auction dynamics on graphs

There are many possible convex relaxations of the graph cut. We will consider
the natural analogue of the heat content energy on graphs, the graph heat
content (GHC)

GHC(u,W ) =

N∑
i=1

∑
x,y∈V

W (x, y)ui(x)(1− ui(x)), (39)

where u : V → KN is an element of the convex relaxation of the space of N -
phase partitions of V. In analogy to the continuum heat content, we may obtain
a graph MBO scheme by successively minimizing linearizations of GHC [15, 23].
Up to a constant term, the linearization of (39) at a partition Σ is given by

LΣ(u) =

N∑
i=1

∑
x∈V

ui(x)
∑
y/∈Σi

W (x, y). (40)
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Figure 6: At final time, from a couple of other angles, with a few of its neighbors
showing.

Figure 7: The initial and final configurations of the volume preserving flow on
a randomly shifted cubic lattice. Each image shows two of the grains. The
final configuration is fixed under the flow, but is not the global minimizer of the
surface energy.

Our goal is to obtain a scheme which minimizes (38). As long as W is a pos-
itive semi-definite (PSD) matrix, GHC will be concave. Therefore, successively
minimizing linearizations of (38) will dissipate the energy. The points x ∈ F
must have their labels fixed, so we only need to minimize the linearizations over
x ∈ V \ F . Thus, at every step we are led to solve:

arg min
u:V\F→KN

N∑
i=1

∑
x∈V\F

ψi(x)ui(x) s.t. Bi−|Fi| ≤
∑

x∈V\F

ui(x) ≤ Ui−|Fi| (41)

where ψi(x) =
∑
y/∈Σi

W (x, y). Under some very simple transformations, the
above problem is equivalent to the upper and lower volume bound assignment
problem (28). Thus we may solve (41) using Algorithms 3 and 4.
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Figure 8: Running the flow on the 8 subunit cubic lattice with temperature
fluctuations leads to the Weaire-Phelan structure. The Weaire-Phelan structure
contains two distinct subunits shown in the first two images, the truncated
hexagonal trapezohedron on the left and the pyritohedron on the right. The
bottom image shows how 3 of the subunits fit together.

The set of data points V is finite and therefore necessarily compact. The
energy (38) decreases with each iteration of auction dynamics. Combining com-
pactness and monotonicity, we may conclude that the iterations eventually con-
verge to a local minimum. Due to the concavity of GHC, we cannot guarantee
that the local minimum is unique or independent of the initial condition. We can
tackle this difficulty by incorporating temperature (as described in Section 3.4).
The random temperature fluctuations allow the algorithm to escape local min-
ima and find lower energy solutions. Nonetheless, experimental results show
that auction dynamics finds high quality solutions even without temperature
(c.f. Tables 5-8).

It remains to construct the weight matrix W . In the graph setting, W
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Table 3: Benchmark datasets

Dataset Dimension Points Classes W construction timing (s)
MNIST 784 70,000 10 149.04

Opt-Digits 64 5,620 10 2.03
Three Moons 100 1,500 3 0.025

essentially plays the role of the convolution kernel K. This suggests setting
W (x, y) = f(|x− y|) for some decreasing function f . However, we do not want
to connect all points x and y. The data points V typically cluster near a low
dimensional manifold embedded in RD. To best reflect this manifold structure,
we only connect the k nearest neighbors of each point and set the remaining
entries of W to zero. Under these assumptions a popular choice for the weights
are the Zelnick-Manor and Perona (ZMP) weight functions [49]:

W (x, y) = exp

(
−|x− y|2

σ(x)σ(y)

)
(42)

where σ(x), σ(y) are local scaling parameters for x, y respectively. We will
take σ(x) = |x − xr| where xr is the rth nearest neighbor of x for some
r ∈ {0, 1, . . . , k}. In general, this construction will not produce a PSD ma-
trix. Thus we take as our final weight matrix W ′ = WTW .

5.3 Experimental results

To demonstrate the efficiency and accuracy of the auction dynamics approach to
the SSL problem, we test against several benchmark machine learning datasets:
Opt-Digits, MNIST, COIL, and Three Moons. We consider the performance of
our algorithm both with and without temperature and with a wide range of class
size constraints. All experiments were run using C code on a single processor
core. k-nearest neighbors were calculated using the kd-tree code in the VLFeat
library. Table 3 shows the timing information for VLFeat. Initial segmentations
were computed using the Voronoi diagram construction described in [23]. All
of our subsequent timing information in Table 4 includes the time required to
initialize the segmentation and run the auction dynamics iterations.

On each dataset, we build the weight matrix using the ZMP construction
detailed above and choose the nearest neighbor and scaling parameters k and r
experimentally. The auction error tolerance, εmin, the scaling parameter, α, and
the initial error term ε0 are set to 10−7, 4 and 0.1 respectively. Without tem-
perature, we run auction dynamics either until convergence or until the relative

energy change |Ek+1−Ek|
Ek+1

drops below 10−4. If we introduce temperature, then

we run a fixed number of iterations and extract the lowest energy configuration
that was found.
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5.3.1 Benchmark datasets

Here we detail the various datasets that we tested our algorithm against.

Opt-Digits: Opt-Digits is a database of 5620 handwritten digits [25]. The
data is recorded as an 8×8 integer matrix, where each element is between 0 and
16. We construct the weight matrix using the 15 nearest neighbors and local
scaling by the 7th nearest neighbor.

MNIST: MNIST is a data set of 70,000 grayscale 28 × 28 pixel images of
handwritten digits (0-9). Each of the digits is centered and size normalized.
The data set is separated into 60,000 training images and 10,000 test images.
We combine them to create a single set of 70,000 images to test against. We
perform no preprocessing on the images. We construct the weight matrix using
the 15 nearest neighbors with local scaling based on the 7th nearest neighbor.

COIL: The Columbia Object Image Library (COIL-100) is a database of
128 × 128 pixel color images of 100 different objects photographed at various
different angles [35]. In [36] the authors processed the COIL images to create
a more difficult benchmark set. The red channel of each image is downsampled
to 16 × 16 pixels by averaging over blocks of 8× 8 pixels. The images are then
further distorted and downsampled to create 241 dimensional feature vectors.
Then 24 of the objects are randomly selected and randomly partitioned into 6
different classes. Discarding 38 images from each class leaves 250 images per
class for a total of 1500 points. We construct the weight matrix using the 4
nearest neighbors and local scaling by the 4th nearest neighbor.

Three Moons: The Three Moons synthetic data set consists of three half
circles embedded into R100 with Gaussian noise. The standard construction is
built from circles centered at (0, 0), (3, 0), (1.5, 0.4) with radii of 1,1, and 1.5
respectively. The first two half circles lie in the upper half plane, while the
third circle lies in the lower half plane. The circles are then embedded into R100

by setting the remaining 98 coordinates to zero. Finally, Gaussian noise with
mean zero and standard deviation 0.14 is added to each of the 100 coordinates.
We construct the dataset by sampling 500 points from each of the three circles,
for a total of 1500 points. The weight matrix was built using the 15 nearest
neighbors with local scaling by the 7th nearest neighbor.

5.3.2 Results and comparison to other methods

In Tables 5-8, we present the results of our algorithm on Opt-Digits, MNIST,
COIL and Three Moons. The algorithm is tested both with and without tem-
perature and using several different volume bounds. We set the upper and lower
bounds, U and B respectively, to be Bi = Vi(1− x) and Ui = Vi(1 + x) where
Vi is the ground truth volume of phase i and x ∈ {0, 1

10 , . . . ,
4
10}. When tem-

perature is used, we set T = 0.1. All reported results were averaged over 100
trials where F was chosen at random in each trial.
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In general, we have observed that volume bounds increase the accuracy of the
segmentation especially when the training set is extremely small. More notably,
this advantage persists even when one can only estimate very rough volume
bounds. For example, using only 0.05% of the training data on the MNIST
dataset, we obtain a nearly 91.5% accuracy rate even when the upper and lower
bounds deviate 30% from the true class size. We also see that incorporating
temperature improves accuracy by finding lower energy solutions. Temperature
is particularly effective in conjunction with volume bounds, as the bounds help
ensure that the lower energy solutions are non-trivial.

A thorough comparison to other methods is presented in Tables 9 and 10.
Our procedure achieves an accuracy that is better than or comparable with
some of the best recent methods. A notable advantage of auction dynamics
is that it is able to perform very well even with a very low number of labeled
points. Indeed, we obtain high quality results at fidelity percentages that are
out of reach for other state-of-the-art methods for the SSL problem.

Table 4: Timing (in seconds)

Data Set Bounds 1.0 1.2 1.4 no size
Fid. % 1.0 0.8 0.6 constraints

MNIST 5% 9.992 / 0.555 7.501 / 0.339 7.202 / 0.298 7.180 / 0.279
0.05% 10.83 / 2.629 9.353 / 1.857 9.103 / 1.219 8.033 / 0.637

OptDigits 20% 0.741 / 0.022 0.589 / 0.015 0.585 / 0.014 0.584 / 0.014
0.4% 0.862 / 0.035 0.732 / 0.034 0.723 / 0.034 0.627 / 0.021

COIL 25% 0.022 / 0.002 0.019 / 0.001 0.019 / 0.001 0.019 / 0.001
3% 0.026 / 0.002 0.022 / 0.002 0.021 / 0.002 0.019 / 0.001

Three Moons 5% 0.09 / 0.005 0.08 / 0.005 0.08 / 0.005 0.06 / 0.003
0.25% 0.09 / 0.008 0.09 / 0.006 0.08 / 0.007 0.06 / 0.006

Bold= with temperature, not bold= without temperature

6 Conclusion

In this paper, we have derived a new, accurate and efficient method for com-
puting volume-constrained curvature motion. Our method is derived from the
variational formulation of threshold dynamics based on the heat content energy.
Using the variational framework, we demonstrate a novel and surprising connec-
tion between volume constrained MBO schemes and the assignment problem.
We then propose an efficient scheme for computing the motion based on specially
developed variants of auction algorithms.

Our resulting scheme, auction dynamics, has many desirable properties. The
interfaces are represented implicitly and thus topological changes are handled
effortlessly. The volume constrained heat content energy is a Lyapunov func-
tional for our scheme, thus we can guarantee unconditional gradient stability
independently of the time step size. Our auction based approach ensures that
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Table 5: Optdigits Results.

Bounds 1.0 1.1 1.2 1.3 1.4 no size
Fid. % 1.0 0.9 0.8 0.7 0.6 constraints

0.4% 93.04% 92.38% 91.70% 91.06% 89.96% 85.29%
86.87% 86.80% 86.16% 85.57% 85.10% 83.38%

0.5% 95.96% 95.18% 94.66% 93.84% 93.06% 89.76%
91.76% 91.06% 90.39% 89.87% 89.31% 87.98%

0.75% 98.07% 97.19% 96.62% 96.33% 95.85% 94.68%
95.90% 95.07% 94.34% 93.89% 93.62% 93.00%

1% 98.39% 97.57% 97.14% 96.91% 96.75% 96.33%
97.11% 96.24% 95.69% 95.40% 95.26% 95.04%

Bold= with temperature, not bold= without temperature

the volume constraints are satisfied exactly at every iteration, this allows our
algorithm to be viable in situations where phase boundaries are rough or poorly
resolved.

In addition, auction dynamics is highly flexible and can be used for a wide
range of applications. We show how to adapt the algorithm to include random
fluctuations due to temperature and solve segmentation problems on weighted
graphs. In the application to the SSL problem, our algorithm is particularly
effective. We are able to obtain highly accurate solution with training set sizes
that are unprecedentedly small compared to other state-of-the-art methods.
In the continuum setting, auction dynamics (particularly in conjunction with
temperature) shows great promise as a tool for computing minimal partitions of
space. We hope that the algorithm will prove to be useful for further exploration
in this area.
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[15] Selim Esedoḡlu and Matt Jacobs. Convolution kernels, and stability
of threshold dynamics methods. SIAM Journal on Numerical Analysis,
55(5):2123–2150, September 2017.

[16] Selim Esedoglu, Matt Jacobs, and Pengo Zhang. Kernels with prescribed
surface tension and mobility for threshold dynamics schemes. Journal of
Computational Physics, 337(15):62–83, May 2017.

[17] C. Garcia-Cardona, E. Merkurjev, A. L. Bertozzi, A. Flenner, and A. G.
Percus. Multiclass data segmentation using diffuse interface methods on

36



Table 8: Three Moons Results.

Bounds 1.0 1.1 1.2 1.3 1.4 no size
Fid. % 1.0 0.9 0.8 0.7 0.6 constraints

0.25% 92.38% 92.68% 90.91% 88.20% 86.40% 84.52%
88.06% 91.01% 87.87% 87.73% 86.08% 85.70%

0.5% 97.66% 97.64% 94.80% 92.79% 90.29% 90.22%
94.84% 94.31% 93.16% 92.24% 91.38% 90.97%

0.75% 98.54% 98.09% 95.86% 94.85% 94.16% 93.53%
96.74% 96.20% 94.95% 93.66% 93.52% 93.04%

1% 98.80% 98.22% 96.62% 95.34% 95.04% 94.04%
97.90% 97.10% 95.99% 95.61% 95.26% 94.53%
Table 9: Accuracy Comparison to Other Methods

MNIST (supervised approaches)
Method Accuracy

boosted stumps* [26, 30] 92.3-98.74%
k-nearest neighbors* [29, 30] 95.0-97.17%

neural/conv. nets* [29, 10, 30] 95.3-99.65%
nonlinear classifiers* [29, 30] 96.4-96.7%

SVM* [29, 11] 98.6-99.32%
Proposed (55% fidelity) 99.14%

- Note that algorithms, marked by *, use substantially more data for training.

graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence,
36(8):1600–1613, 2014.

[18] C. Garcia-Cardona, E. Merkurjev, A.L. Bertozzi, A. Flenner, and A.G.
Percus. Multiclass data segmentation using diffuse interface methods on
graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence,
36(8):1600–1613, 2014.

[19] A.V. Goldberg. Solving minimum-cost flow problems by successive approx-
imation. In STOC 87, November 1986.

[20] A.V. Goldberg. Efficient graph algorithms for sequentialand parallel com-
puter. Technical report, Laboratory for Computer Science, M.I.T., 1987.

[21] A.V. Goldberg and R.E. Tarjan. Solving minimum cost flow problems by
successive approximation. In Proc. 19th ACM STOC, May 1987.

37



[22] Thomas Hales. The honeycomb conjecture. Discrete and Computational
Geometry, 25(1):1–22, 2001.

[23] M. Jacobs. A fast MBO scheme for multiclass data classification. In Sixth
International Conference on Scale Space and Variational Methods in Com-
puter Vision, 2016.

[24] T. Joachims et al. Transductive learning via spectral graph partitioning.
In International Conference on Machine Learning, volume 20, page 290,
2003.

[25] C Kaynak. Methods of combining multiple classifiers and their applications
to handwritten digit recognition. Master’s thesis, Institute of Graduate
Studies in Science and Engineering, Bogazici University, 1995.
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Table 10: Accuracy Comparison to Other Methods

MNIST

Method/ % Labeled Nodes 0.25% 0.5% 1.0%

TVP [48] 83.7% 86.3% 90.8%
multiclass MBO [17] 73.0% 90.1% 94.9%
LapRF (m = 1) [48] 84.2% 90.9% 95.1%
TVRF (m = 1) [48] 93.4% 96.4% 96.8%
LapRF (m = 2) [48] 91.0% 94.2% 95.6%
TVRF (m = 2) [48] 94.6% 96.6% 96.7%

Proposed (No constraints) 96.68% 97.18% 97.30%
Proposed (Exact volume constraints) 97.32% 97.38% 97.43%

OptDigits

Method/ % Labeled Nodes 0.89% 1.78% 2.67%

LapRLS [3, 44] 92.3% 97.6% 97.3%
sGT [24, 44] 91.4% 97.4% 97.4%

SQ-Loss-I [44] 95.9% 97.3% 97.7%
MP [44] 94.7% 97.0% 97.1%

LapRF (m = 1) [48] 79.0% 95.2% 96.8%
TVRF (m = 1) [48] 95.9% 97.2% 98.3%

Proposed (No constraints) 95.39% 97.74% 98.12%
Proposed (Exact volume constraints) 98.31% 98.64% 98.72%

COIL

Method/ % Labeled Nodes 3.3% 6.7% 10%

multiclass MBO [18] 72.9% 85.4% 91.5%
convex method [2] 72.7% 85.2% 93.4%
LapRLS [3, 44] 78.4% 84.5% 87.8%

sGT [24, 44] 78.0% 89.0% 89.9%
SQ-Loss-I [44] 81.0% 89.0% 90.9%

MP [44] 78.5% 90.2% 91.1%
LapRF (m = 1) [48] 71.7% 87.0% 91.0%
TVRF (m = 1) [48] 80.3% 90.0% 91.7%

Proposed (No constraints) 81.50% 91.21% 93.63%
Proposed (Exact volume constraints) 81.57% 91.41% 93.73%

Three Moons

Method/ % Labeled Nodes 1.66% 3.33% 5%

multiclass MBO [17] 68.3% 84.1% 94.3%
LapRF (m = 1) [48] 95.1% 96.4% 98.1%
TVRF (m = 1) [48] 96.4% 98.2% 98.4%
LapRF (m = 2) [48] 96.4% 97.9% 98.5%
TVRF (m = 2) [48] 96.4% 98.2% 98.6%

Proposed (No constraints) 97.46 % 98.49% 98.79%
Proposed (Exact volume constraints) 99.34% 99.48% 99.51%
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