

Gases

State of Matter - Gas (Vapor)

Form
Compressibility
Shape
Volume

Example: Steam

Kinetic (Moving) Theory of Gases

Gases are composed of molecules in constant motion Gas molecules move in random directions
Molecules of a gas collide frequently with each other \& with vessel walls (why gases mix to uniformity \& fill all portions of the containment vessel)

Gas molecules move with an average velocity at a given temperature. (the average energy of molecules in a gas is the same for all substances)

Distance between gas molecules >> than size of the individual molecules (why gases can be compressed)

Molecules are perfectly elastic ... no energy is lost when molecules collide (If not-elastic, the temperature of a gas mix would always decrease with time)

Works for "Ideal" Gases:
No molecular interactions 'cause of large separation Volume of gas molecules insignificant

Molecular Explanation of Gas Properties

Property
Compressibility
Low density Mixable

Uniform pressure

Compress

Gas Molecules:
Widely spaced
Widely spaced
Widely spaced
In constant, random motion
In constant, random motion
In constant, random motion
No energy loss collisions

Mix

Fill

Gas behavior is described in terms of:
 Volume Pressure Temperature Quantity (moles) \# molecules
(V)
(P)
(T)
(n)

P
n

Pressure = molecular impact on container walls

 Like little BB's striking container walls

Pressure = force/area

More impacts / time $\boldsymbol{>}$ Increased Pressure

Like faster moving BB's striking container walls

Pressure = force/area

Pressure = Force per Unit Area

UNITS:
Related to atmosphere mm Hg (torr) inches Hg inches $\mathrm{H}_{2} \mathrm{O}$ bar (or millibar) atm
Related to force psi (pounds / in ${ }^{2}$)
Pa (Pascals: newtons / m²)

Atmospheric pressure = weight of atmosphere

One atmosphere (atm) of Pressure

1 atm equals:
760 millimeters of mercury 760 torr
29.92 inches of mercury
101.3 kilopascals (kPa)
1.01325 bars
$14.7 \mathrm{lbs} / \mathrm{in}^{2}$ (psi)
33 feet of sea water (fsw)
34 feet of fresh water (fiw)

10 meters of sea water (msw)
10.4 meters of fresh water (mfw)

Barometer measures weight of atmosphere

Converting Pressure Measurements

NOAA reports barometric pressure in mm of mercury. What is atmospheric pressure in inches of mercury?

$$
760.0 \mathrm{~mm} \mathrm{Hg} \times \frac{1}{1000 \mathrm{~mm}} \times \frac{100 \mathrm{~cm}}{1 \mathrm{~m}} \times \frac{1 \quad \mathrm{in}}{2.54 \mathrm{~cm}}=29.92 \mathrm{in} \mathrm{Hg}
$$

What is the atmospheric pressure in bar?

$$
760.0 \mathrm{~mm} \mathrm{Hg} \times \frac{1}{760 \mathrm{~mm} \mathrm{Hg}} \times \frac{\mathrm{atm}}{1.01325 \mathrm{bar}}=1.013 \mathrm{bar}
$$

Converting Pressure Measurements

Americans commonly use psig for cylinder pressures Others use units of bar ($\mathbf{1 0 0}$ kiloPascals)

Gauge vs. Absolute Pressure

Gauges have a zero point

Gauge zero point = 1 atmospheric pressure

Absolute Pressure

Absolute pressure = pressure of gauge + atmospheric pressure Represents the actual (total) pressure on the system Gases respond to the absolute pressure

| DEPTH | ABSOLUTE
 PRESSURE | GAUGE
 PRESSURE | AIR
 VOLUME | SURFACE VOLUME
 EQUIVALENT |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 ATM | OATM | 1 | |
| 10 | 2 ATM | 1 ATM | $1 / 2$ | |

Absolute Pressure

Total pressure on system: gauge pressure + atmospheric pressure

DEPTH		
0 m	0 fSW	1 ata
10 m	33 fsW	2 ata
20 m	66 fSW	3 ata

$$
P_{t}=P_{g}+P_{a}
$$

For absolute pressure: Need to add 1 atm

SPG Pressure Depth Gauge

Use Appropriate Units

Gauges calibrated: fsw or msw

Converting Depth To Pressure

Converting depth sea water (fsw) to absolute pressure in atmospheres (ata): 33 fsw of depth represents $1 \mathbf{~ a t m}$ of pressure ($33 \mathrm{fsw} / 1 \mathbf{~ a t m}$)

Pressure on Diver:
Weight of atmosphere +
Weight of water above diver
$\frac{(D \mathrm{fsw}+33 \mathrm{fsw})}{33 \mathrm{fsw} / \mathrm{atm}}=P$ ata
For a depth of 33 fsw
$\frac{(33 f s w+33 f s w)}{33 f s w / a t m}=2.0$ ata
For a depth of 99 fsw
$(99 f s w+33 f s w)=4.0$ ata
33 fsw / atm

Converting Depth To Pressure

It is critical to keep consistent units when solving problems For example:
Assume an American trained diver on vacation rents a depth gauge calibrated in meters. The diver dives with a guide to 40 m .
If the American diver only remembers

$$
\text { ata }=\text { Depth/33 + } 1 \text { (without units) }
$$

the following diver calculation error is possible:

$$
\text { ata }=40 / 33+1=2.21
$$

(Actual units the diver is using in $\}$)

$$
\text { ata }=(40\{\mathrm{~m}\} / 33 \text { fsw/atm })+1 \mathrm{~atm}=2.21\{\mathrm{~m}-\mathrm{atm} / \mathrm{fsw}\}
$$

SHOULD BE:

$$
\text { ata }=(40 \mathrm{~m} / 10 \mathrm{msw} / \mathrm{atm})+1 \mathrm{~atm}=5 \mathrm{ata}
$$

Let the units drive the solution

Converting Pressure To Depth

Converting absolute pressure (ata) to depth sea water (fsw) 33 fsw of depth represents 1 atm of pressure ($33 \mathrm{fsw} / 1 \mathrm{~atm}$)

$$
D \text { fsw }=(\text { Pata } x 33 \text { fsw/atm })-33 \text { fsw }
$$

For 5 atm of absolute pressure
$D=(5 \mathrm{~atm} \times 33$ fsw $/ \mathrm{atm})-33$ fsw $=132$ fsw
For 3 ata ($\mathbf{a t a}=\mathbf{a t m}+1 \mathbf{a t m}$)
$\mathrm{D}=(3 \mathrm{~atm} \times 33$ fisw/atm) - 33 fisw $=66$ fisw
For 2 ata
$D=(2 \mathrm{~atm} \quad \mathrm{x} 33$ fsw/atm) -33 fsw $=33$ fsw
For 1.4 ata
$D=(1.4 \mathrm{~atm} \times 33 \mathrm{fsw} / \mathrm{atm})-33 \mathrm{fsw}=13.2 \mathrm{fsw}$

Temperature

The average kinetic energy (K.E.) of molecules

$$
\begin{aligned}
\text { K.E. } & =\text { energy of motion } \\
& =1 / 2 \text { mass(velocity) }
\end{aligned}
$$

As velocity (speed) slows, K.E. decreases \& temperature falls At K.E. $=0, \mathrm{v}=0$ (Absolute zero... no molecular movement)

At constant temperature, larger molecules move slower

Thermometer

Device for measuring temperature

As liquid warms, it expands \& Amount of expansion is quantified

Clinical (Maximum Temperature): Restriction Prevents Liquid Return to Bulb

Temperature Scales

Fahrenheit (${ }^{\circ} \mathrm{F}$)
Dutch scientist

Daniel Fahrenheit
1724

Placed mercury in closed glass column
Used three points to define scale:
0 = coldest that could be reached with water, ice, sea salt slush 32 = water/ice $96=$ arm pit temperature (used bisection to create scale)

$0^{\circ} \mathrm{F}$

$32^{\circ} \mathrm{F}$

Human
Arm Pit

$96^{\circ} \mathrm{F}$

Boiling Water

$212{ }^{\circ} \mathrm{F}$
water: freczing and boiling points 180 units apart

Temperature Scales

Celsius (Centigrade, ${ }^{\circ} \mathrm{C}$) Swedish Astronomer International scientific scale Used two points to define scale: $100=$ freezing point of water $0=$ boiling point of water

Freezing Water

$100{ }^{\circ} \mathrm{C}$

Boiling Water

$0^{\circ} \mathrm{C}$

Anders Celsius
1742

"Absolute" Temperature Scales

William Thompson (Lord Kelvin) 1848
Proposed a scale based on absolute zero as zero point
Uses the Centigrade (1/273 gas volume change) degree
Makes all temperatures have positive value

$$
\mathrm{K}={ }^{\circ} \mathrm{C}+273 \quad{ }^{\circ} \mathrm{C}=\mathrm{K}-273
$$

William Rankine

1859
Proposed a scale based on absolute zero as zero point Uses the Fahrenheit degree

$$
{ }^{\circ} \mathrm{R}={ }^{\circ} \mathrm{F}+459 \quad{ }^{\circ} \mathrm{F}={ }^{\circ} \mathrm{R}-459
$$

Gas laws must use absolute temperatures

Science uses Kelvin
American engineering (especially heating / cooling) uses Rankine

Temperature Conversions

Zero point difference: 32 degrees

$$
\begin{array}{ll}
{ }^{0} \mathrm{~F}=9 / 5{ }^{\circ} \mathrm{C}+32 & 180 / 100=9 / 5 \\
{ }^{\circ} \mathrm{C}=5 / 9\left({ }^{0} \mathrm{~F}-32\right) &
\end{array}
$$

$\mathbf{K}={ }^{0} \mathbf{C}+273$ (Kelvin, Absolute Celsius Scale)

By convention, there is no ${ }^{\circ}$ symbol for degrees kelvin

Gas Behavior (Equations or Laws)

Must use absolute temperature and pressure
"Ideal" Gases
Described by Kinetic Theory of Gases Behavior predictable by "Ideal Gas Laws" Valid at low pressures \& high temperatures Not valid at compressed gas cylinder pressures Need more complex "Real" Gas Equations

STP

Standard Temperature \& Pressure Standard Temperature $=0^{\circ} \mathrm{C}$ (273 K)

Standard Pressure $=1 \mathrm{~atm}$ (760 torr)

At STP:

22.4 L = 1 mole of any gas
22.4 L weighs Molar Mass
22.4 L contains 6.02×10^{23} molecules

STP

Allows comparisons to different locations and conditions

Gas Laws

Rigid and Flexible Gas Containers

Walls: rigid
Volume: constant

Rupture when internal pressure exceeds container strength
Example: compressed gas cylinder

Walls: flexible
Volume: constant if internal \& surroundings pressures equal
Volume: changes if internal \& surroundings pressures unequal
Rupture when internal pressure exceeds container strength
Examples: balloon, internal air spaces (lungs, ears, sinus, gut)

Joseph Louis Guy-Lussac

French chemist

 Student of Jacques Charles Studied Gases In Chemical Reactions

Pressure - Temperature relationship (1809)

 Maybe called Charles's Law or Charles's Law \#2 Sometimes called Amonton's Law (Proposed relationship, but lacked technology to prove)

But,
Guy-Lussac was first to experimentally document P-T relation
His observations - a primary source of absolute temperature scale

Guy-Lussac's Law

Heat energy increases molecular motion.

Volume of rigid cylinder cannot increase; the pressure increases

At constant volume, in a RIGID container: pressure is directly proportional to the absolute temperature

Guy-Lussac's Law

Pressure versus Temperature

Absolute Zero (-273.16 ${ }^{\circ} \mathrm{C}$)

A scuba cylinder contains 3000 psig at $7{ }^{\circ} \mathrm{F}$. It is left in the trunk of a car on a hot summer day. If the temperature of the trunk is $115{ }^{\circ} \mathrm{F}$, what will be the gauge pressure of the cylinder?

Using Guy-Lussac's Law: $\mathrm{P}_{1} / \mathrm{T}_{1}=\mathrm{P}_{2} / \mathrm{T}_{2}$ Remember \mathbf{P} \& T must in absolute values Since P value given in $\mathrm{psi}, 1 \mathbf{~ a t m}=14.7 \mathrm{psi}$ psiga $=3000$ psi +14.7 psi $=3014$ psia
Since T given in ${ }^{\circ} \mathrm{F}$, use Rankin Absolute Scale

$$
\begin{aligned}
& \mathrm{T}_{1}=78^{\circ} \mathrm{F}+460=538^{\circ} \mathrm{R} \\
& \mathrm{~T}_{2}=115{ }^{\circ} \mathrm{F}+460=575^{\circ} \mathrm{R}
\end{aligned}
$$

Substituting in Guy Lussac's Law
3014.7 psia / $538^{\circ} \mathrm{R}=\mathrm{P}_{2} / 575^{\circ} \mathrm{R}$
$\mathrm{P}_{2}=3222$ psia

Converting to gauge pressure
3222 psia - 14.7 psi $=3207$ psig
Copyright Larry P. Taylor, Ph.D. All Rights Reserved

A cylinder at $25^{\circ} \mathrm{C}$ has a gauge pressure of 200 bar. Predict the gauge pressure at $42{ }^{\circ} \mathrm{C}$.

Using Guy-Lussac's Law: $\mathrm{P}_{1} / \mathrm{T}_{1}=\mathrm{P}_{2} / \mathrm{T}_{2}$
Remember \mathbf{P} \& T must in absolute values
Since P value given in bar, $1 \mathbf{~ a t m}=1.01$ bar

$$
\text { psiga }=200 \text { bar }+1.01 \text { bar }=201.01 \text { bar }
$$

Since T given in ${ }^{\circ} \mathrm{C}$, use Kelvin Absolute Scale

$$
\begin{aligned}
& \mathrm{T}_{1}=25^{\circ} \mathrm{C}+273=298 \mathrm{~K} \\
& \mathrm{~T}_{2}=42^{\circ} \mathrm{C}+273=315 \mathrm{~K}
\end{aligned}
$$

Substituting in Guy Lussac's Law

$$
\begin{aligned}
& 201 \text { bar } / 298 \mathrm{~K}=\mathrm{P}_{2} / 315 \mathrm{~K} \\
& \mathrm{P}_{2}=212.5 \text { bar }
\end{aligned}
$$

Converting to gauge pressure

212.5 bar -1.01 bar $=212$ bar

Jacques Charles

French chemist Scientific Advisor to Montgolfier brothers

Volume - Temperature Relationship (1787)

1783 - First hot air balloon
Sack cloth and paper with 1800 buttons
Redesigned the way hot-air balloons were built:
Silk instead of paper construction
Hydrogen instead of hot air
Valve line
Wicker basket passenger compartment

Charles' Law

Heat energy increases molecular motion.

 Volume of flexible container increases
At constant pressure, in a FLEXIBLE container volume is directly proportional to the absolute temperature

If $\mathbf{T}=$ negative, volume = negative (not realistic)
Need temperature to be positive

Charles' Law

Absolute Zero (-273.16 ${ }^{\circ} \mathrm{C}$)

If a scuba cylinder is capable of delivering $40 \mathrm{ft}^{\mathbf{3}}$ of air to a diver at $78^{\circ} \mathrm{F}$, how much air is available at $55^{\circ} \mathrm{F}$?

Using Charles' Law: $\mathrm{V}_{1} / \mathrm{T}_{1}=\mathrm{V}_{2} / \mathrm{T}_{2}$
Since T given in ${ }^{\circ} \mathrm{F}$, use Rankin Absolute Scale

$$
\begin{aligned}
& \mathrm{T}_{1}=78^{\circ} \mathrm{F}+460=538^{\circ} \mathrm{R} \\
& \mathrm{~T}_{2}=55^{\circ} \mathrm{F}+460=515^{\circ} \mathrm{R}
\end{aligned}
$$

Substituting into Charles' Law

$$
40 \mathrm{ft}^{3} / 538^{\circ} \mathrm{R}=\mathrm{V}_{2} / 515^{\circ} \mathrm{R}
$$

Solving:

$$
V_{2}=38.3 \mathrm{ft}^{3}
$$

The temperature $55^{\circ} \mathrm{F}$ is typically the temperature of the first thermocline of a fresh water lake. Charles' law explains why divers have less air available to them in colder water.

A scuba cylinder delivers 1000 L of air at $25^{\circ} \mathrm{C}$. If this cylinder is used at $18{ }^{\circ} \mathrm{C}$. how much air will be available to the diver?

Using Charles' Law: $\mathrm{V}_{1} / \mathrm{T}_{1}=\mathrm{V}_{2} / \mathrm{T}_{2}$
Since T given in ${ }^{\circ} \mathrm{C}$, use Kelvin Absolute Scale

$$
\begin{aligned}
& \mathrm{T}_{1}=25^{\circ} \mathrm{C}+273=298 \mathrm{~K} \\
& \mathrm{~T}_{2}=18^{\circ} \mathrm{C}+273=291 \mathrm{~K}
\end{aligned}
$$

Substituting into Charles' Law

$$
1000 \mathrm{~L} / 298 \mathrm{~K}=\mathrm{V}_{2} / 291 \mathrm{~K}
$$

Solving:

$$
V_{2}=977 \mathrm{~L}
$$

When descending below the thermocline, the decrease in BCD volume changes buoyancy and divers need to add gas to compensate Thermoclines are often visualized by silt particles resting on the colder, more dense water

Robert Boyle

Irish Alchemist Father of modern chemistry Founder of Royal Society

Pressure - Volume relationship (1660)

New Experiments: Phsico-Mechanical Touching the spring of air and their effects (1660) The Sceptical Chymst (Air, Earth, Fire, \& Water not elements) (1661)

In an evacuated chamber Observed bubble in snake's eye Reduced Pressure Changes Physiology Bell produced no sound

Air needed to carry sound

Boyles's Law

At constant temperature, the volume of a flexible container depends upon the surrounding pressure

At constant temperature, in a FLEXIBLE container volume is indirectly proportional to the absolute pressure

Boyles's Law

Greatest volume change:
~12 feet to surface
Means greatest risk to tissue: shallow water

Explains:
Ear Discomfort while ascending / descending Grandpa's knee forecasting weather
Changes in all gas volumes with altitude / depth Changes in pressure with altitude / depth

What is the physical volume (in ft^{3}) of an aluminum " 80 "?

An aluminum " 80 " delivers $80 \mathrm{ft}^{3}$ at one atmosphere pressure when filled to 3000 psig.
Using Boyle's Law: $\mathrm{P}_{1} \mathrm{~V}_{\mathbf{1}}=\mathrm{P}_{\mathbf{2}} \mathrm{V}_{\mathbf{2}}$
Since P value given in psi, $1 \mathbf{~ a t m}=14.7 \mathrm{psi}$

$$
\text { psiga }=3000 \text { psi }+14.7 \text { psi }=3014.7 \text { psia }
$$

Substituting into Boyle's Law:

$$
(14.7 \mathrm{psia})\left(80 \mathrm{ft}^{3}\right)=\left(3014.7 \text { psia) } \mathrm{V}_{2}\right.
$$

Solving:

$$
\mathrm{V}_{2}=0.39 \mathrm{ft}^{3}
$$

This physical volume represents how much water the cylinder would hold if the valve were removed and the cylinder were filled with water. This is the "water capacity" of a scuba cylinder.

A scuba cylinder is rated at 2400 L with a pressure of 200 bar. What is the physical volume (water capacity) of the cylinder.?

Using Boyle's Law: $P_{1} \mathbf{V}_{1}=P_{2} \mathbf{V}_{2}$
Since P value given in bar, $1 \mathbf{~ a t m}=1 \mathrm{bar}$

$$
\text { psiga = } 200 \text { bar }+1 \text { bar = } 201 \text { bar }
$$

Substituting into Boyle's Law:

$$
(1 \text { bar })(2400 \mathrm{~L})=(201) \mathrm{V}_{2}
$$

Solving:

$$
\mathrm{V}_{2}=11.9 \mathrm{~L}
$$

Determine the volume of air from an " 80 " $\mathrm{ft}^{3} \mathrm{cylinder}$ that will be available to the diver at $33,66,99$ and 132 fsw

Using Boyles' Law: $\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{\mathbf{2}} \mathrm{V}_{\mathbf{2}}$
For 33 feet:
(1 ata) $\left(80 \mathrm{ft}^{3}\right)=\left(2\right.$ ata) V_{2}
$\mathrm{V}_{2}=40 \mathrm{ft}^{3}$
For 66 feet:
(1 ata) $\left(80 \mathrm{ft}^{3}\right)=\left(3\right.$ ata) V_{2} $\mathrm{V}_{2}=26.7 \mathrm{ft}^{3}$
For 99 feet:
$(1 \mathrm{ata})\left(80 \mathrm{ft}^{3}\right)=(4 \mathrm{ata}) \mathrm{V}_{2}$ $\mathrm{V} 2=20 \mathrm{ft}^{3}$
For 132 feet:
$\left(1\right.$ ata) $\left(80 \mathrm{ft}^{3}\right)=(5 \mathrm{ata}) \mathrm{V}_{2}$
$\mathrm{V} 2=16 \mathrm{ft}^{3}$

General Gas Law

$$
\frac{p_{1} v_{1}}{t_{1}}=\frac{p_{2} v_{2}}{t_{2}}
$$

Units need to be same on both sides of $=$ P \& T must be in absolute measure

General Gas Law

$$
\frac{p_{1} v_{1}}{t_{1}}=\frac{p_{2} v_{2}}{t_{2}}
$$

If P constant: If V constant:
 $$
\frac{v_{1}}{t_{1}}=\frac{v_{2}}{t_{2}} \quad \frac{p_{1}}{t_{1}}=\frac{p_{2}}{t_{2}}
$$

Charles

Guy-Lussac

If T constant:

$\mathbf{p}_{1} \mathbf{v}_{1}=\mathbf{p}_{2} \mathbf{v}_{2}$

Boyle

Universal Gas Law Problem Matrix

A standard method for determining Gas Law Solutions Facilitates Solving

Set up the universal gas law table of values

	Pressure (units)	\rightarrow	Pressure (absolute)	Volume (units)	Temperature (${ }^{\circ} \mathrm{C}$)	\rightarrow	Temperature (K)
Initial						+273	
Final						+273	

Fill in table values from the problem description Place problem table values into general gas law Solve

Proportional Thinking

$\frac{p v}{t}=k$

Proportional Thinking

$\mathrm{pv}=\mathrm{k}$ t

If P constant:

$$
\frac{\mathbf{v}}{\mathbf{t}}=\mathbf{k}
$$

Charles' Law
Direct
Proportion

If V constant:

$$
\frac{\mathbf{p}}{\mathbf{t}}=\mathbf{k}
$$

Guy-Lussac's Law Direct
Proportion

If T constant:
$\mathbf{p V}=\mathbf{K}$

Boyle's Law Inverse
Proportion

Proportional Thinking

$\underline{p \mathrm{~V}}=\mathrm{k}$
 t

Variables change to keep k constant

If P constant:

v and t change (increase or decrease) in same direction

If V constant:

p and t change (increase or decrease) in same direction

If T constant:

$$
\mathbf{p} \mathbf{v}=\mathbf{k}
$$

p and v change (increase or decrease) in opposite direction

Proportional Thinking: Word problems

At constant volume, if temperature decreases, pressure \square

At constant pressure, if temperature increases, volume \square

At constant temperature, if pressure increases, volume \qquad

Proportional Thinking: Word problems

At constant volume, if temperature decreases, pressure decreases

$$
\underset{\downarrow}{\underline{t}}=k \longrightarrow \frac{\downarrow \underline{p}}{t}=k \quad P \& T \text { Move same direction }
$$

At constant pressure, if temperature increases, volume increases

$$
\frac{\mathbf{v}}{\uparrow_{\mathrm{t}}}=\mathrm{k} \rightarrow \frac{\uparrow \mathbf{v}}{\mathrm{t}}=\mathrm{k} \quad \mathrm{~V} \text { \& T Move same direction }
$$

At constant temperature, if pressure increases, volume decreases

John Dalton

School teacher with contributions to:

 Atomic TheoryUnderstanding Color Blindness Studies on Gas Behavior

$$
\begin{aligned}
& \text { Dalton's Law of Partial Pressure (1803) } \\
& P_{\text {total }}=P_{1}+P_{2}+P_{3}+\ldots P_{n}
\end{aligned}
$$

For a mixture of ideal gases,

 total pressure = sum of the partial pressures of gases present
Dalton's Law: Partial Pressures

Dalton's law: In a mixture of gases, the total pressure is the sum of the partial pressures of the individual components

$$
\mathbf{P}=\mathbf{P}_{1}+\mathbf{P}_{2}+\mathbf{P}_{3}+\ldots+\mathbf{P}_{n}
$$

The partial pressure of a gas is the product of the fraction of that gas times the total pressure

$$
\mathbf{P}_{g}=F_{g} \mathbf{x} \quad \mathbf{P}_{\text {total }}
$$

Where

$\mathbf{P}_{\mathrm{g}}=$ partial pressure of the component gas
$\mathrm{F}_{\mathrm{g}}=$ fraction of the component gas in the mixture
$\mathbf{P}_{\text {total }}=$ the total pressure of the gas mixture

Dalton's Law: Partial Pressures

Total pressure is always the sum of component gas pressures

Dalton's Law: Partial Pressures

Pressure in alveolar spaces immediately equilibrates with blood

A mixture of gases at 760 torr contains $55.0 \% \mathrm{~N}_{2}, \mathbf{2 5 . 0} \% \mathrm{O}_{2}$, and $20.0 \% \mathrm{CO}_{2}$ by volume. What is the partial pressure of each gas?

$\mathrm{N}_{2}: 55.0 / 100 \times 760$ torr $=418$ torr
 $\mathrm{O}_{2}: 25.0 / 100 \times 760$ torr $=150$ torr
 $\mathrm{CO}_{2}: 20.0 / 100 \times 760$ torr $=152$ torr

Total $($ check $)=760$ torr

A 200 mL flask contains O_{2} at 220 torr and a 300 mL flask contains N_{2} at 100 torr. The flasks are connected and the gasses are allowed to completely fill the system. There is no temperature change. What is the partial pressure of each gas and the total pressure?

The final volume is $\mathbf{2 0 0} \mathbf{~ m L}+\mathbf{3 0 0} \mathbf{~ m L}=\mathbf{5 0 0} \mathbf{~ m L}$
$\mathrm{O}_{2}: 220$ torr $(200 / 500)=88$ torr
$\mathrm{N}_{2}: 100$ torr $(\mathbf{3 0 0} / 500)=60$ torr
Total: 60 torr +88 torr $=148$ torr

William Henry

> British chemist Solubility of gases Composition of HCl and NH_{3} Disinfecting powers of heat

Gas in liquid solubility: Henry's Law (1803)

Determined solubility of gases in liquids a function of: Partial pressure of the gas Temperature of the system Characteristics of the liquid

Very important when environmental pressure changes (alters gasses dissolved in the body)

Henry's Law

The amount of any given gas that will dissolve in a liquid at a given temperature is a function of the partial pressure of the gas that is in contact with the liquid and the solubility coefficient of the gas in the particular liquid

```
Sg}=\mp@subsup{K}{H}{}\times\mp@subsup{P}{g}{
```

S_{g} solubility of the gas
K_{h} liquid solubility constant
\mathbf{P}_{g} Partial pressure of the gas

Increase in pressure \gg increase in solubility Decrease in pressure $\boldsymbol{>}$ decrease in solubility

Henry's Law

Gas solubility changes with temperature

Colder water (Great Lakes): Divers carry additional gas loads

Graham's Law

The speed of gas diffusion (gas mixing due to kinetic energy) or effusion (gas moving through a tiny opening) is inversely proportional to the square root of their molar masses.

This is commonly written for effusion:

Graham's Law

Useful for:

separation of gases of different densities separation of isotopes

prime means for producing nuclear material

 determining molar mass of unknown material

Compare the relative rates of effusion of H_{2} and CO through a fine pinhole.

Molar masses:

$$
\begin{aligned}
& \mathrm{CO}=28.0 \\
& \mathrm{H}_{2}=2.00
\end{aligned}
$$

Compare the relative rates of effusion of $\mathbf{H}_{\mathbf{2}}$ and $\mathbf{O}_{\mathbf{2}}$ through a fine pinhole.
Molar masses:

$$
\begin{aligned}
& \mathrm{O}_{2}=32.0 \\
& \mathrm{H}_{2}=2.0
\end{aligned}
$$

Rate $\mathrm{H}_{2}=\sqrt{\underline{32.0}}=4.0$

Avogadro's Law (1811)

More Moles (Molecules) means more molecular collisions

Plot is Linear:
Volume \& \# moles
Directly Proportional

Avagadro's Law

At constant temperature and pressure, volume is directly proportional to the number of moles present

1.00 mole of gas occupies 1.45L. If the quantity of gas is increased to $\mathbf{2 . 5 0}$ moles, what is the new volume of gas?

Pressure	Volume
(torr)	(L)

Initial	constant	1.45	1.00
Final	constant	$?$	2.50

Pressure constant, use Avagadro's Law

$$
\begin{gathered}
\frac{\mathrm{V}_{1}=\underline{\mathrm{V}}_{2}}{\mathrm{n}_{1}} \\
\frac{1.45 \mathrm{~L}}{1.00 \mathrm{~m}}=\frac{\mathrm{V}_{2}}{2.50 \mathrm{~m}} \longrightarrow \quad \mathrm{~V}_{2}=\frac{(1.45 \mathrm{~L})(2.50 \mathrm{~m})}{1.00 \mathrm{~m}} \\
\mathrm{~V}_{2}=3.625 \mathrm{~L} \longrightarrow 3.63 \mathrm{~L}
\end{gathered}
$$

Ideal Gas Law

PV = kT

$\mathrm{R}=\frac{\mathrm{PV}}{\mathrm{nT}}$

R makes "numbers work"

For:
P in atm; V in $L ; T$ in K
$R=$ universal gas constant: $0.08206 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{K} \cdot \mathrm{mol}$

Ideal Gas Law

PV = nRT
Based on kinetic theory of gases
Primary use is single point determination
Assumes:
Volume of individual gas molecules is negligible
There is no attraction between individual molecules
Strongest correlation between calculated and measured:
Low pressure
High temperature
Monatomic gases
Ideal gas law assumes vast distances between gas molecules
Typically not discussed in scuba classes
Idea equation examples follow (for enlightenment)

Calculate the pressure of a 2.50 mole sample of a gas in a 5.50 L container at $27^{\circ} \mathrm{C}$.

Only one condition given $\boldsymbol{>}$ use Ideal Gas Law:

$$
\mathrm{PV}=\mathrm{nRT}
$$

$$
\text { P }(5.50 \mathrm{~L})=(2.50 \mathrm{~mole})(0.08206 \mathrm{~L}-\mathrm{atm} / \mathrm{K}-\mathrm{mol})(27+273 \mathrm{~K})
$$

$$
\mathrm{P}=(2.50 \mathrm{~mole})(0.08206 \mathrm{~L}-\mathrm{atm} / \mathrm{K}-\mathrm{mol})(300 \mathrm{~K})
$$

(5.50 L)

$$
\mathrm{P}=11.19 \mathrm{~atm} \Rightarrow 11.2 \mathrm{~atm}
$$

How many moles of a gas occupy 2.67 L at STP?

Only one condition given $\stackrel{>}{ }$ use Ideal Gas Law: STP: Standard Temperature \& Pressure $\Rightarrow 1$ atm and 273 K
$\mathrm{PV}=\mathrm{nRT}$
(1.00 atm) (2.67 L) = n (0.08206 L-atm/K-mol) (273 K)
$\mathrm{n}=\frac{(1.00 \mathrm{~atm})(2.67 \mathrm{~L})}{(0.08206 \mathrm{~L}-\mathrm{atm} / \mathrm{K}-\mathrm{mol})(273 \mathrm{~K})}$
$\mathrm{n}=0.119184 \boldsymbol{} \mathbf{~} \mathbf{0} 119$ mole

Real (Non-Ideal) Gases

Ideal gases (because of decreased distance between molecules) often will differ in behavior from ideal gas equations. Modifications of ideal laws to account for molecular volumes and attractions are termed Real or non-ideal situations.

Van der Waals' Real Gas Equation

Modifies ideal gas law to account for molecular volume and attractions
New Volume term: V-nb ($\mathrm{n}=$ moles; $\mathrm{b}=$ specific constant for each gas)
New Pressure term: $P+a n^{2} / V^{2}(a=$ specific constant for each gas)

$$
\left(P+a n^{2} / V^{2}\right)(V-n b)=n R T
$$

Values of a and bavailable in gas tables
Complex calculations best done by calculator / computer
Details of solution on next slide from Gas Law Primer http://www-personal.umich.edu/~lpt/primer.htm

Assume : $80 \mathrm{ft}^{3}$ scuba cylinder with water capacity of $0.4 \mathrm{ft}^{3}(11.3 \mathrm{~L})$ This corresponds to $\mathbf{\sim} \mathbf{1 0 0}$ moles of air Using the Ideal gas equation at $25^{\circ} \mathrm{C}$, the pressure would be:

$$
\begin{aligned}
& \mathrm{P}=\frac{(100 \text { moles })(0.0821 \mathrm{~L}-\mathrm{ata} / \mathrm{deg} \mathrm{~K} \text { moles) }(298 \mathrm{~K})}{11.3 \mathrm{~L}} \\
& \mathrm{P}=216.5 \text { ata }(\text { This corresponds to } 3182.5 \text { psia or } 3168 \text { psig) }
\end{aligned}
$$

Using Van DerWaal's for compressed air:

$$
P=\frac{(100 \mathrm{~mole})(0.0821 \mathrm{~L}-\mathrm{ata} / \mathrm{K} \text { moles })(298 \mathrm{~K})}{(11.3 \mathrm{I}-0.036 \mathrm{~L} / \mathrm{mole}(100 \text { mole }))}-\frac{(100 \mathrm{~mole})^{2}\left(1.33 \mathrm{~L}^{2}-\mathrm{atm} / \mathrm{mole}^{2}\right)}{(11.3 \mathrm{~L})^{2}}
$$

Solving:

$P=317.738$ ata - 104.159 ata
$\mathrm{P}=213.58$ ata (This corresponds to 3139 psia or 3124 psig)
For most scuba applications, this difference is not significant, but Becomes critical when mixing gases
Copyright Larry P. Taylor, Ph.D. All Rights Reserved

Extra Example Problems Using Gas Table For Setup

From CEM 101

All pressures in class assumed absolute

A sample of oxygen occupies a volume of 1240 mL at temperature of $45^{\circ} \mathrm{C}$. What is the volume of this gas sample if the temperature is raised to $85^{\circ} \mathrm{C}$?

Pressure	Volume (mL)	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	\longrightarrow	Temperature (\mathbf{K})	
Initial	constant	1240	45	+273	318
Final	constant	$?$	85	+273	358

Pressure constant, use Charles' Law

$$
\frac{\mathrm{v}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{v}_{2}}{\mathrm{~T}_{2}}
$$

$$
\frac{1240 \mathrm{~mL}}{318 \mathrm{~K}}=\frac{\mathrm{V}_{2}}{358 \mathrm{~K}} \longrightarrow \frac{(1240 \mathrm{~mL})(358 \mathrm{~K})}{318 \mathrm{~K}}=\mathrm{V}_{2}
$$

$$
\mathrm{V}_{2}=1395.97 \mathrm{~mL} \Rightarrow 1400 \mathrm{~mL} \quad\left(1.40 \times 10^{3} \mathrm{~mL}\right)
$$

Calculate the volume a gas will occupy at $15{ }^{\circ} \mathrm{C}$ if the gas has a volume of $830 . \mathrm{mL}$ at $42{ }^{\circ} \mathrm{C}$.

Calculate the final temperature in ${ }^{\circ} \mathrm{C}$ of a gas initially at $39^{\circ} \mathrm{C}$ whose volume changes from 348 ml to 657 mL . The pressure remains constant.

Pressure	Volume $(\mathbf{m L})$	Temperature $\left({ }^{\circ} \mathbf{C}\right)$	\longrightarrow	Temperature (\mathbf{K})	
Initial	constant	348	39	+273	312
Final	constant	657	$?$	+273	$?$

Pressure constant, use Charles' Law

$$
\frac{\mathrm{v}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{v}_{2}}{\mathrm{~T}_{2}}
$$

$$
\frac{348 \mathrm{~mL}}{312 \mathrm{~K}}=\frac{657 \mathrm{~mL}}{\mathrm{~T}_{2}} \longrightarrow \frac{(657 \mathrm{~mL})(312 \mathrm{~K})}{(348 \mathrm{~mL})}=\mathrm{T}_{2}
$$

$$
\begin{aligned}
& \mathrm{T}_{2}=589.038 \Rightarrow 589 \mathrm{~K} \\
& \mathrm{~T}_{2}=589 \mathrm{~K}-273=316^{\circ} \mathrm{C}
\end{aligned}
$$

A sample of oxygen has a pressure of $1420 . \mathrm{mm} \mathrm{Hg}$ at a temperature of $75^{\circ} \mathrm{C}$. What is the pressure of this gas sample if temperature is lowered to $19^{\circ} \mathrm{C}$?

	Pressure (torr)*	Volume	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	\longrightarrow	Temperature (\mathbf{K})
Initial	1420	constant	75	+273	348
Final	$?$	constant	19	+273	292

Volume constant, use Guy-Lussac's Law

$$
\underline{\mathrm{P}}_{1}=\frac{\mathrm{P}_{2}}{\mathrm{~T}_{1}}
$$

$$
\frac{1420 \text { torr }}{348 \mathrm{~K}}=\frac{\mathbf{P}_{2}}{292 \mathrm{~K}} \longrightarrow \frac{(1420 \text { torr) }(292 \mathrm{~K})}{348 \mathrm{~K}}=\mathrm{P}_{2}
$$

$$
P_{2}=1191.49 \text { torr } \Rightarrow 1190 \text { torr } \Rightarrow 1190 \mathrm{~mm} \mathrm{Hg}
$$

* $1 \mathrm{~mm} \mathrm{Hg}=1$ torr

Calculate the pressure a gas will exert at $65^{\circ} \mathrm{C}$ if the gas has a pressure of 830. torr at $52{ }^{\circ} \mathrm{C}$.

	Pressure (torr)	Volume	Temperature $\left({ }^{\circ} \mathbf{C}\right)$	\longrightarrow	Temperature (\mathbf{K})
Initial	830	constant	52	+273	325
Final	$?$	constant	65	+273	338

Volume constant, use Guy-Lussac's Law

$$
\underline{\mathrm{P}}_{1}=\frac{\mathrm{P}_{2}}{\mathrm{~T}_{1}} \mathrm{~T}_{2}
$$

$$
\frac{830 \text { torr }}{325 \mathrm{~K}}=\frac{\mathrm{P}_{2}}{338 \mathrm{~K}} \longrightarrow \frac{(830 \text { torr) }(338 \mathrm{~K})}{325 \mathrm{~K}}=\mathrm{P}_{2}
$$

$$
P_{2}=863.2 \text { torr } \Rightarrow 863 \text { torr }
$$

A sample of nitrogen has a pressure of 1420 . torr at a temperature of $75^{\circ} \mathrm{C}$. What is the ${ }^{\circ} \mathrm{C}$ temperature of this gas if the pressure is lowered to 258 torr?
Pressure
(torr) \quad Volume $\quad \underset{\left({ }^{(} \mathrm{C}\right)}{\text { Temperature }} \longrightarrow \underset{(\mathrm{K})}{\text { Temperature }}$

Initial	1420	constant	75	+273	348
Final	258	constant	$?$	+273	$?$

Volume constant, use Guy-Lussac's Law

$$
\underline{\mathrm{P}}_{1}=\underline{\mathrm{P}}_{2} \mathrm{~T}_{1}
$$

$$
\frac{1420 \text { torr }}{348 \mathrm{~K}}=\frac{258 \text { torr }}{\mathrm{T}_{2}} \longrightarrow \frac{(258 \text { torr })(348 \mathrm{~K})}{(1420 \text { torr })}=\mathrm{T}_{2}
$$

$$
\begin{aligned}
& T_{2}=63.2262 \mathrm{~K} \Rightarrow \mathrm{~T}_{2}=63.2 \mathrm{~K} \\
& \mathrm{~T}_{2}=63.2 \mathrm{~K}-273=-210^{\circ} \mathrm{C}
\end{aligned}
$$

At 723 mm Hg a gas has a volume of 294 mL . What is the new volume of this gas if the pressure is changed to 585 mm Hg ?

	Pressure $(\mathrm{mm} \mathrm{Hg})$	Volume (mL)	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Temperature (\mathbf{K})
Initial	723	294	constant	constant
Final	585	$?$	constant	constant

Temperature constant, use Boyle's Law

$$
P_{1} V_{1}=P_{2} V_{2}
$$

$(723 \mathrm{~mm} \mathrm{Hg})(294 \mathrm{~mL})=(585 \mathrm{~mm} \mathrm{Hg}) \mathrm{V}_{2}$
$(723 \mathrm{~mm} \mathrm{Hg})(294 \mathrm{~mL})=\mathrm{V}_{2}$
(585 mm Hg)

$$
\mathrm{V}_{2}=363.354 \mathrm{~mL} \Rightarrow 363 \mathrm{~mL}
$$

At 723 torr a gas has a volume of 294 mL . What is the new pressure of this gas if the volume is changed to $\mathbf{1 2 5 6} \mathbf{~ m L}$?

	Pressure (torr)	Volume $(\mathbf{m L})$	Temperature $\left({ }^{(} \mathrm{C}\right)$	Temperature (\mathbf{K})
Initial	723	294	constant	constant
Final	$?$	1256	constant	constant

Temperature constant, use Boyle's Law

$$
P_{1} V_{1}=P_{2} V_{2}
$$

$(723 \mathrm{torr})(294 \mathrm{~mL})=(1256 \mathrm{~mL}) \mathrm{P}_{2}$
$(723$ torr $)(294 \mathrm{~mL})=\mathrm{P}_{2}$
(1256 mL)
$P_{2}=169.237 \Rightarrow 169$ torr

A sample of neon with a volume of 825 mL at a temperature of $37^{\circ} \mathrm{C}$ and a pressure of 600 . torr is heated to a temperature of $68^{\circ} \mathrm{C}$ and a pressure of 940 . mm Hg. What is the new volume of the gas?
$\underset{\text { Pressure }}{\text { (torr) })} \underset{(\mathrm{mL})}{\text { Volume }} \underset{\left({ }^{\circ} \mathrm{C}\right)}{\text { Temperature }} \longrightarrow \underset{(\mathbf{K})}{\text { Temperature }}$

Initial
Final

600
940

825
?

37
68
$+273$
$+273$

Pressure, Volume \& Temperature change, use General Gas Law

$$
\begin{gathered}
\frac{p_{1} v_{1}}{t_{1}}=\frac{p_{2} v_{2}}{t_{2}} \\
\frac{(600 \text { torr })(825 \mathrm{~mL})}{310 \mathrm{~K}}=\frac{(940 \text { torr }) \mathrm{v}_{2}}{341 \mathrm{~K}} \longrightarrow \frac{(600 \text { torr })(825 \mathrm{~mL})(341 \mathrm{~K})}{(310 \mathrm{~K})(940 \mathrm{torr})}=\mathrm{v}_{2} \\
\mathrm{~V}_{2}=579.255 \mathrm{~mL}
\end{gathered}
$$

A sample of argon with a volume of 4.37 L at a temperature of $58^{\circ} \mathrm{C}$ and a pressure of 725 torr is cooled to a temperature of $22{ }^{\circ} \mathrm{C}$ and a pressure of 615 mm Hg. What is the new volume of the gas?

$\underset{(\text { torr })}{\text { Pressure }} \underset{(\mathrm{L})}{\text { Volume }} \underset{\left({ }^{\circ} \mathrm{C}\right)}{\text { Temperature }} \longrightarrow$| Temperature |
| :---: |
| (K) |

Initial $725 \quad 4.37$

615
(C)

Final
Initial

58
22
$+273$
$+273$

331
295

Pressure, Volume \& Temperature change, use General Gas Law

$$
\begin{gathered}
\frac{p_{1} v_{1}}{t_{1}}=\frac{p_{2} v_{2}}{t_{2}} \\
\frac{(725 \text { torr })(4.37 \mathrm{~L})}{331 \mathrm{~K}}=\frac{(615 \text { torr }) \mathrm{v}_{2}}{295 \mathrm{~K}} \longrightarrow \frac{(725 \text { torr })(4.37 \mathrm{~L})(295 \mathrm{~K})}{(331 \mathrm{~K})(615 \text { torr })}=\mathrm{v}_{2} \\
\mathrm{~V}_{2}=4.59133 \mathrm{~L} \Rightarrow 4.59 \mathrm{~L}
\end{gathered}
$$

A sample of nitrogen with a volume of 14.7 L at a temperature of $95^{\circ} \mathrm{C}$ and a pressure of $\mathbf{4 8 5}$ torr is brought to STP. What is the new volume?

	Pressure (torr)	Volume (\mathbf{L})	Temperature $\left({ }^{(} \mathbf{C}\right)$	\longrightarrow	Temperature (\mathbf{K})
Initial	485	14.7	95	+273	368
Final	760	$?$	0	+273	273

Pressure, Volume \& Temperature change, use General Gas Law

$$
\begin{gathered}
\frac{p_{1} v_{1}}{t_{1}}=\frac{p_{2} v_{2}}{t_{2}} \\
\frac{(485 \text { torr })(14.7 \mathrm{~L})}{368 \mathrm{~K}}=\frac{(760 \text { torr }) \mathrm{v}_{2}}{273 \mathrm{~K}} \rightarrow \frac{(485 \text { torr) }(14.7 \mathrm{~L})(273 \mathrm{~K})}{(368 \mathrm{~K})(760 \text { torr })}=\mathrm{v}_{2} \\
\mathrm{~V}_{2}=6.95922 \mathrm{~L}
\end{gathered}
$$

A sample of neon at STP has a volume of 286 L . What is the pressure in atmospheres if the temperature is changed to $95^{\circ} \mathrm{C}$ at a new volume of 26.5 L ?

	Pressure $(\text { ata })^{*}$	Volume (L)	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Temperature (K)
Initial	1.00	286	0	+273

A sample of xenon with a volume of 825 mL at a temperature of $37^{\circ} \mathrm{C}$ and a pressure of 600 . torr is changed to a pressure of $940 . \mathrm{mm} \mathrm{Hg}$ at a volume of $\mathbf{6 2 8}$ mL . What is the temperature in ${ }^{\circ} \mathrm{C}$ of the gas?
$\underset{\text { Pressure }}{\text { (torr) }} \boldsymbol{\text { Volume }} \underset{(\mathrm{mL})}{\text { Vemperature }} \underset{\left({ }^{(} \mathrm{C}\right)}{\longrightarrow} \quad \underset{(\mathrm{K})}{\text { Temperature }}$

Initial
Final

600
940

825
628

37
? $\quad+273$

Pressure, Volume \& Temperature change, use General Gas Law

$$
\frac{\mathbf{p}_{1} \mathbf{v}_{1}}{\mathbf{t}_{1}}=\frac{\mathbf{p}_{2} \mathbf{v}_{2}}{\mathrm{t}_{2}}
$$

$$
\begin{aligned}
\frac{(600 \text { torr })(825 \mathrm{~mL})}{310 \mathrm{~K}}= & \frac{(940 \text { torr })(628 \mathrm{~mL})}{\mathrm{T}_{2}} \longrightarrow \frac{(940 \text { torr })(628 \mathrm{~mL})(310 \mathrm{~K})}{(600 \text { torr) }(825 \mathrm{~mL})}=\mathrm{T}_{2} \\
& \mathrm{~T}_{2}=369.695 \mathrm{~K} \Rightarrow 370 \mathrm{~K} \\
& \mathrm{~T}_{2}=370 \mathrm{~K}-273=97^{\circ} \mathrm{C}
\end{aligned}
$$

Solving Gas Law Problems:

Merely a Matter of Paying Attention to Details!

