

## Terms Used

Density $=$ mass per unit volume

$$
\text { Density }=\frac{\text { mass }}{\text { volume }} \mathrm{D}=\frac{\mathrm{m}}{\mathrm{v}} \quad \mathrm{~V}=\frac{\mathrm{m}}{\mathrm{D}} \quad \mathrm{~m}=\mathrm{V}_{\mathrm{xD}}
$$

Density is a physical property of substances.


A measurement of how much "Stuff" is in a unit volume


## Terms Used

## Buoyancy: <br> Upward force directly opposing weight <br> Weight: <br> Downward force <br> Result of object interacting with gravity

Rigorously: buoyancy is always upward; always positive
Common usage:
Positively buoyant: object floats (density < water)
Neutrally buoyant: object hovers (density = water)
Negatively buoyant: object sinks (density > water)


## Terms Used

Objects seem to decrease weight when submerged

Apparent Weight:
Actual weight - Buoyant Force

## Archimedes Principle

An object partially or wholly immersed in a fluid, is buoyed up by a force equal to the weight of the fluid displaced by the object Translation (for water):
objects more dense than water (like lead) will sink
objects less dense than water (like cork) will float
objects of the same density will remain at the same level (hover)


Buoyancy


## Density: Salt vs. Fresh Water



## Salt Water: $64 \mathrm{lb} / \mathrm{ft}^{3}$ Fresh Water: $62.4 \mathrm{lb} / \mathrm{ft}^{3}$



Same object floats higher in salt water


## Water \& Ice



Water


Ice


Ice less dense than water, so it floats

If ice did not float, most fresh water critters would not survive winter


## Buoyancy Problems



## "Force Arrows" (Vectors)

## Problems involving forces <br> Often solved with "force arrows" line showing magnitude and direction


§Represents buoyancy (upward force)
Represents gravity (downward force)

What is the buoyancy in seawater of a 2000 lb piece of wood that measures $6 \mathrm{ft} \times 2 \mathrm{ft} \times 3 \mathrm{ft}$ ?


$$
\begin{aligned}
& \text { For Wood: } \\
& \text { Weight: } 2000 \mathrm{lbs} \\
& \text { Volume: } 6 \mathrm{ft} \times 2 \mathrm{ft} \times 3 \mathrm{ft}=36 \mathrm{ft}^{3} \\
& \text { Density: } 2000 \mathrm{lb} / \mathrm{ft}^{3} / 64 \mathrm{lb} / \mathrm{ft}^{3}=55.6 \mathrm{lb} / \mathrm{ft}^{3} \\
& \text { Weight of equal volume of seawater: } \\
& 36 \mathrm{ft}^{3} \times 64 \mathrm{lb} / \mathrm{ft}^{3}=2304 \mathrm{lb} \\
& \text { Weight wood < Weight water } \\
& \text { Wood object would float }
\end{aligned}
$$

What is the buoyancy in seawater of a 2000 lb piece of wood that measures $6 \mathrm{ft} \times 2 \mathrm{ft} \times 3 \mathrm{ft}$ ?

Determine buoyancy using forces Weight wood: 2000
Weight displaced water: 2304
Net (Buoyant) force: 304
etermine Apparent Weight: $2000 \mathrm{lb}-304 \mathrm{lb}=1696 \mathrm{lb}$
How much of the wood is submerged?
Wood density: $\mathbf{5 5 . 6} \mathrm{lb} / \mathrm{ft} 3$
Water density: $64 \mathrm{lb} / \mathrm{ft} 3$
Density ( $\mathrm{lb} / \mathrm{ft}^{3}$ ) Ratio: $55.6 / 64=0.869$
So ~ 87 \% of wood submerged

A fully suited diver weighs 200 pounds. The diver displaces 3.0 cubic feet of sea water. Will the diver sink or float?


# Weight Diver: 200 lb <br> Weight Displaced Volume of Seawater: <br> $3.0 \mathrm{ft}^{3} \times 64 \mathrm{lb} / \mathrm{ft}^{3}=192 \mathrm{lb}$ 

Determine buoyancy using forces

$$
\begin{array}{ll}
\text { Weight diver: } & 200 \mathrm{lb} \\
\text { Weight displaced water: } & 192 \text { lb }
\end{array}
$$ Net Force: $8 \mathrm{lb} \downarrow$

Diver is too heavy (by 8 lb ) and will sink

A wet suit diver weighs 210 pounds. In fresh water, this diver needs 18 pounds of weight to hover ("Neutrally Buoyant"). How much weight will the diver need to use this same configuration in sea water?


A wet suit diver weighs 210 pounds. In fresh water, this this same configuration in sea water?

$$
\begin{aligned}
& \text { Determine sea water displacement: } \\
& 3.65 \mathrm{ft}^{3} \times 64 \mathrm{lb} / \mathrm{ft}^{3}=233.6 \mathrm{lb} \Rightarrow 234 \mathrm{lb} \\
& \text { Determine sea water buoyant force: } \\
& \text { Sea water buoyant force: } 234 \mathrm{lb} \uparrow \\
& \text { Diver weight: } \\
& \text { Net force: } \\
& 210 \mathrm{lb} \downarrow \\
& \text { N }
\end{aligned}
$$

Diver needs 6 more pounds ( 24 lb - 18 lb ) for sea water

A wet suit diver weighs 210 pounds. In sea water, this diver needs 18 pounds of weight to hover ("Neutrally Buoyant"). How much weight will the diver need to use this same configuration in fresh water?

> Total weight of hovering diver:
> Diver: 210 lb Weight: 18 lb Total Weight: $228 \mathrm{lb} \downarrow$ Volume of displaced water: Volume $=$ Mass $/$ Density
> Volume $=228 \mathrm{lb} / 64 \mathrm{lb} / \mathrm{ft}^{3}=3.56 \mathrm{ft}^{3}$

Diver needs 6 less pounds ( 18 lb - 12 lb ) for sea water

A diver wants to lift a 1600 pound object from a flat silt free lake 1 bottom using 55 gal lifting pillows (weighing 20 pounds each). How Many $\mathbf{5 5}$ gallon devices is needed for the lift?

Weight = Density x Volume
$1 \mathrm{gal}=0.134 \mathrm{ft}^{3}$
$62.4 \mathrm{lb} / \mathrm{ft}^{3} \times 55 \mathrm{gal} \times 0.134 \mathrm{ft}^{3} / \mathrm{gal}=460 \mathrm{lb}$
Determine device lifting capacity:
Weight of displaced water: $460 \mathrm{lb} \uparrow$
Weight of device:
Net Lifting capacity:
Weight of device:
Net Lifting capacity:



## Determine device water displacement:

Each lifting device can manage to lift ~ 440 lb

A diver wants to lift a 1600 pound object from a flat silt free lake 2 bottom using 55 gal lifting pillows (weighing 20 pounds each). How Many 55 gallon devices are needed for the lift?

# Determine number of lifting devices needed: <br> Weight needed to lift: 1600 pounds Lifting capacity per device: 440 pounds $1600 \mathrm{lb} \times 1$ device $/ 440 \mathrm{lb}=3.63$ devices 



Diver needs four $\mathbf{5 5}$ gallon lifting pillows

A wet suit diver weighs 210 pounds. In sea water, this diver needs 18 pounds of weight to hover ("Neutrally Buoyant"). How much weight will the diver need to use this same configuration in fresh water?


Determine fresh water displacement:

$$
3.65 \mathrm{ft}^{3} \times 62.4 \mathrm{lb} / \mathrm{ft}^{3}=222.1 \mathrm{lb} \Rightarrow 222 \mathrm{lb}
$$

Determine fresh water buoyant force:
Freshwater buoyant force: $222 \mathrm{lb} \uparrow$
Diver weight: $210 \mathrm{lb} \downarrow$
Net force:
12 lb

## Non-Diving Significance of Density



Extra "Stuff"


## Fluids Layer Based on Density

May be based on chemical composition
Salt water more dense than fresh
Cold water more dense than warm
Fluids of different density resist mixing



Moving thru halocline


Water layers by temperature

Glacial melting is altering Arctic water density-driven-currents Potential to destroy the Atlantic Gulf Stream (force an Ice Age)

## Visible Bubbles Decrease Density of Liquids (Gases less dense than liquids)



Methane bubbles from volcanic vents, especially in the Mid-Atlantic Some believe some ship losses can be from encountering "mega-bubbles"

## Star Trek Special Effects: Transporter



Swirling mix of salt water, fresh water, and metallic flakes

## Warm Fluids Typically Less Dense



Lava Lamps


Convection Flow


Galileo
Air Thermometer

Hot-Air Balloon

## Breezes

## Much of Weather is Conflict Between Different density Air Masses

## Cold air more dense than warm air



Fluids of different density Resist mixing


## Barometer

Measures weight of air

## "Lift"

## Shape of wing causes rapid air flow on upper surface

 Creates density differences above/below wing

Lower density above wing = lift

## Boiling Point: Function of Weight of Air



Bubbles contain water in gas state. Vapor pressure is equal or greater than atmospheric pressure.
C. Ophandt, c. 2003



At high altitudes: Boiling point water lower Cooking temperature less Food takes longer to cook

## Freezing Point: Depressed By Dissolved Solids

## Polar ocean water temperatures: ~ - $\mathbf{2}^{\circ} \mathrm{C}\left(\mathbf{2 8}^{\circ} \mathrm{F}\right.$ ) Below water freezing point




## Fat Floats

Weight in-water Weight out-of-water


## Difference $\Rightarrow$ \% Body Fat

Fatty tissue less dense than muscle tissue

Michigan: $5^{\text {th }}$ Most Obese State
By 2030, estimated > 60 \% MI will be obese Type II Diabetes now considered an epidemic Health care costs $\rightleftharpoons$ trillions


## Sand/Water More Dense than People

## Hollywood Horror Movie "Quicksands" Not Likely



Sometimes "Hollywood" is not exactly scientifically accurate

## Continental Crust Less Dense Than Oceanic Crust



## Earthquakes and Volcanoes:

Driven By Density Differences in Continental Plates

## Balance Determined by Fluid Motion in Inner Ear

Alcohol alters density of fluid in semi-circular canals


Inner ear is the last organ in the body to clear alcohol May take 10-18 hours for alcohol to clear from inner ears

## Depleted Uranium Weapons are NOT Nuclear Devices







## Uranium

$$
\begin{gathered}
\text { Density }(\mathrm{g} / \mathrm{mL}) \\
\mathrm{Al}=2.70 \\
\mathrm{Fe}=7.96 \\
\mathrm{~Pb}=11.4 \\
\mathrm{Hg}=13.53 \\
\mathrm{U}=19.07 \\
\mathrm{Au}=19.30 \\
\mathrm{Os}=22.67
\end{gathered}
$$

## Concentration Determined By Density



Aquarium Salinity


Sugar in Maple Syrup


Radiator Protection


Alcohol in Moonshine

## Determining Gold Composition

A presumed gold ring has a mass of 2.832 g . When placed in a a $10-\mathrm{mL}$ graduate cylinder, the water level goes from 5.00 mL to $\mathbf{5 . 1 5} \mathbf{~ m L}$. Is the ring gold ( $\mathrm{d}=\mathbf{1 9 . 3} \mathrm{g} / \mathrm{mL}$ ) ?
Volume of ring $=5.15 \mathrm{~mL}-5.00 \mathrm{~mL}=0.15 \mathrm{~mL}$
$\mathrm{d}=\frac{\text { mass }}{\text { volume }} \Rightarrow \frac{2.832 \mathrm{~g}}{0.15 \mathrm{~mL}} \Rightarrow 18.9 \mathrm{~g} / \mathrm{mL} \Rightarrow 19 \mathrm{~g} / \mathrm{mL}$


Density slightly less than pure gold, so it is a gold ring with some metal alloy to give it strength.

24k ( $\mathrm{d}=19.32 \mathrm{~g} / \mathrm{mL}$ ) generally > 99\% gold.
24 k too soft for jewelry, so gold jewelry is alloyed for strength Alloying metals: $\mathrm{Ag}, \mathrm{Cu}, \mathrm{Zn}, \mathrm{Ni}, \mathrm{Pb}$, and Pt
14 karat density varies from ~ 12 to $14 \mathrm{~g} / \mathrm{mL}$
"karat" value differs from country to country.

## Why Freezing Pipes Burst

Liquid water at $4^{\circ} \mathrm{C}$ has a density of $1.000 \mathrm{~g} / \mathrm{mL}$ Solid water at $0^{\circ} \mathrm{C}$ has a density of $0.920 \mathrm{~g} / \mathrm{mL}$
 What volume will 100. g of water have at these temperatures?

$$
\begin{aligned}
& \text { 100. } \mathrm{g} \times \mathrm{mL} / 1.000 \mathrm{~g}=100 . \mathrm{mL} \\
& 100 . \mathrm{g} \times \mathrm{mL} / 0.920 \mathrm{~g}=109 \mathrm{~mL}
\end{aligned}
$$

\% change:

$$
[(109-100) / 100] \times 100=9 \%
$$



Expanding solid water can crack pipe

## Planning Explorations

Your probe lands on Titan (Saturn moon) to investigate a liquid methane sea (density liquid methane: $422.6 \mathrm{~kg} / \mathrm{m}^{3}$ ).
a. Express the methane density as $\mathrm{g} / \mathrm{cm}^{\mathbf{3}}$

$$
\frac{422.6 \mathrm{~kg}}{\mathrm{~m}^{3}} \times \frac{1000 \mathrm{~g}}{1 \mathrm{~kg}} \times \frac{1 \mathrm{~m}}{100 \mathrm{~cm}} \times \frac{1 \mathrm{~m}}{100 \mathrm{~cm}} \times \frac{1 \mathrm{~m}}{100 \mathrm{~cm}}=0.4223 \mathrm{~g} / \mathrm{cm}^{3}
$$

b. Will your instruments (density $1.53 \mathrm{~g} / \mathrm{cm}^{3}$ ) sink or float in this sea? Why?

Package is more dense than the fluid, so it sinks.


## Loading Cargo

A boy scout troop has collected 2536 lbs of aluminum soda cans. If the density of the cans is $2.70 \mathrm{~g} / \mathrm{cm}^{3}$, what is the minimum volume needed to transport this material to a recycle center?

2536 pounds $\times \frac{454 \mathrm{~g} \times \frac{1}{1 \mathrm{~cm}}}{2.70 \mathrm{~g}} \times \frac{1 \text { inch }}{2.54 \mathrm{~cm}} \times \frac{1 \text { inch }}{2.54 \mathrm{~cm}} \times \frac{1 \text { inch }}{2.54 \mathrm{~cm}}$
Continuing (without isolation):

$$
\times 1 \quad \mathrm{ft} \times 1 \quad \mathrm{ft} \times 1 \quad \mathrm{ft}=17.7824 \mathrm{ft}^{3} \Rightarrow 17.78 \mathrm{ft}^{3}
$$



In 1983 Air Canada flight 143 crew manually calculated (Canada was in process of converting to metric system) the volume of fuel needed for a full load of $22,300 \mathrm{~kg}$. They used a density of 1.77 (no units ). Turns out the density they used was in units of pounds (not kg) per liter.


This is what they did ( $V=M / D$ )
$\mathrm{V}=\frac{22,300}{1.77}=1.26 \times 10^{4}$ liters


They loaded a total $1.26 \times 10^{4}$ liters of fuel.
Gimli Glider
This is what they should have loaded:
$22,300 \mathrm{~kg} \times \frac{1000 \mathrm{~g} \times \frac{1 \mathrm{lb}}{1 \mathrm{~kg}} \times \frac{1 \text { liter }}{454 \mathrm{~g}}=2.31 \times 10^{4} \text { liters } .77 \mathrm{lb}}{1.2}$
This Air Canada flight ran out of fuel at 41,000 feet one hour into the flight and glided 20 km ( 12.4 miles) to a safe landing.

Let the units drive the solution



