Pentaquark Search at HERMES

Wolfgang Lorenzon

(University of Michigan)

for the HERMES Collaboration

Particle ID
 Search for pK_s resonances
 Systematic Studies

Summary and Conclusions

PENTAQUARK04, 20-23 July 2004

The HERMES Spectrometer

Beam: 27.6 GeV e⁺/e⁻ from HERA accelerator Track reconstruction: $\Delta p/p < 2\%$, $\Delta \theta < 0.6$ mrad

Particle ID: TRD, Preshower, Calorimeter (hadron/lepton sep.) dual radiator RICH (π , K, p separation)

Particle Identification

hadron/positron separation

combining signals from: TRD, calorimeter, preshower, RICH

$\mathbf{K}^{\mathbf{0}}_{\mathbf{S}}$ Identification

- after all constraints on event topology
- proton present in event sample
- only events with $M(\pi^+\pi^-)$ within $\pm 2\sigma$ of $M(K_S)$

Results

Unbinned fit is used: result independent of bin size and starting point

W. Lorenzon, PENTAQUARK04

The Signal Width

• p_t gaussian

The Signal and its Background

A Non-Zero Width for Θ^+ ?

• Observed width FWHM: 19 - 24 MeV

• Detector resolution (from MC) FWHM: 10 - 14.6 MeV

 re-fit spectra with Breit-Wigner convolved with a Gaussian (fixed by MC)

 \rightarrow HERMES intrinsic width: $\Gamma = 17 \pm 9 \pm 3$ MeV

Θ^+ Isospin

Production Cross Section

Integrated luminosity: 250 pb⁻¹

Acceptance from MC:

- 1.5% for Λ(1520)
- 0.05% for Θ^+
- branching ratio to pK⁰_s: ¹/₄

 $\longrightarrow HERMES \ estimate: \ \sigma(\Lambda(1520)) = 62 \pm 11 \ nb \\ \sigma(\Theta) = 100-220 \ nb \pm 25\% \ (stat) \\ (additional factor 2 \ from \\ production \ kinematics)$

Comparison with other experiments

● nK⁺

$P p K_s^0$

World Average: 1532.5±2.4 MeV

Large variation in mass not uncommon for new, decaying particles but need to better estimate exp. uncertainties

21-July-2004

Summary of Null Results

Experiment	Θ^+ (1540)	Ξ ^{−−} (1862)	$D^{*-}p(3100)$	Reaction
	$(uudd\overline{s})$	$(ddss\overline{s})$	$(uudd\overline{c})$	
HERA-B	NO	NO		$pA \to \Theta^+ X, \ \Xi^{} X$
E690	NO	NO		$pp \to \Theta^+ X, \ \Xi^{} X$
CDF	NO	NO	NO	$p\overline{p} \to \Theta^+ X, \ \Xi^{} X, \ \Theta^c X$
HyperCP	NO			$\pi, K, p o \Theta^+ X$
BaBar	NO	NO		$e^+e^- \to \Theta^+ X, \ \Xi^{} X$
ZEUS	yes	NO	NO	$ep \to \Theta^+ X, \ \Xi^{} X, \ \Theta^c X$
ALEPH	NO	NO	NO	$e^+e^- \to \Theta^+ X$
DELPHI	NO			$e^+e^- ightarrow \Sigma^+ K^0 p$
	NO			$AuAu \to \Theta^+ X$
FOCUS			NO	$\gamma A o \Theta^c X$
→ BES	NO			$e^+e^- \to J/\Psi \to \Theta^+\overline{\Theta^-}$

0 null results published, only 3 on arXiv so far (7-18-04) \Rightarrow need null results to be published

Open Questions

 How real are positive results?

 check if peaks are generated by "kinematic reflections"(?) ghost tracks acceptance or cuts

 How real are negative results?

- need to published scrutinized as hard as positive results
- Mass?
- Width?
- Spin and Parity
- etc.

How real is the Peak?

check for

- fake peaks ("kinematic reflections")
- detector acceptance and cuts (PYTHIA6 MC / Toy MC)
- ullet Θ^+ vs Σ^{*+}
 - is Θ^+ a pentaquark or a previously unobserved Σ^{*+} ?
- add a fourth hadron
 - is the peak still there?
 - can we guess the production process for the Θ^+ ?
 - can we suppress background?

Fake Peaks?

particle miss-assignment

- ghost tracks
- PID "leaks"

• remove Λ (1116) contribution

Θ^+ vs Σ^{*+}

No peak in $\Lambda\pi^+$ spectrum near 1530 MeV

W. Lorenzon, PENTAQUARK04

The Mass Spectrum

- relatively large BG, although good PID for proton and K_s
 what if we require one additional hadron?
- could additional hadron help remove K_S from other process?

Mass Spectrum after requiring 4^{th} hadron as π

Why does additional π help?

• remove $p(K^*)^{\pm} \rightarrow pK_s^0 \pi^{\pm}$ add new cut: $|M(K_s\pi)-892| < 75 \text{ MeV}$

W. Lorenzon, PENTAQUARK04

The Mass of $p\pi_{4th}^-$ (K^{*} removed)

• there is a Λ (1116) peak from $p\pi_{4th}^-$

• it only contributes 3 events under the Θ^+ peak

 \bullet add Λ veto as a new cut

Θ^+ Mass spectrum with additional π

Production process at HERMES

• can 4th hadron come from exclusive processes?

associated K⁻ or K_s from exclusive processes goes backward

- even decay pions from K_s are inaccessible

- PID threshold requires $p(\Theta^+) > 7 \text{ GeV}$

tagged pions events cannot come from these exclusive processes

- \Rightarrow production process has to be at least partially inclusive
 - inclusive processes increase with higher energy
 - exclusive processes decrease with higher energy

Conclusions and Outlook

• Direct reconstruction of Θ^+ invariant mass $eD \rightarrow \Theta^+ + X \rightarrow K^0_s p + X$

• Mass: $M = 1528 \pm 2.6(stat) \pm 2.1(syst) MeV$

Intrinsic Width: $\Gamma_{\Theta^+} = 17 \pm 9 \pm 3 \text{ MeV}$ Significance: ~ 4 σ

- lacksquare Θ^+ is probably an isosinglet
- Requiring additional π improves signal/background,
 it eliminates K_s contamination from various processes
- Production process is at least partially inclusive
- Anticipate doubling statistics by end of this summer
- Will soon report on Ξ^{--} search and Θ^+ from TOF (low p)

Detector Mass Calibration

	$K_s^0 p \to \pi^+ \pi^-$	$\Lambda(1116) \to p\pi^-$	$\Lambda(1520) \rightarrow pK^-$	$\Xi^{-}(1321) \rightarrow p\pi^{-}\pi^{-}$
HERMES Mass[MeV]	496.8±0.2	1115.70±0.01	1522.7±1.9	1321.5 ± 0.3
PDG Mass[MeV]	497.67	1115.68	1519.5±1.0	1321.31±0.13
σ width (data)[MeV]	6.2±0.2	2.6±0.1	4.4±3.7	3.1 ±0.3
σ width (MC)[MeV]	5.4	2.1	3.5	2.5
Decay Pcm[MeV/c]	206	101	244	139(Λπ ⁻)

→ invariant mass reconstruction of known particles

- \rightarrow full MC simulation reproduces data well
- $\rightarrow \pm 2 MeV$ systematics

Fake Peaks?

particle miss-assignment

- ghost tracks
- PID "leaks"

