

Search at HERMES

Wolfgang Lorenzon hermes Collaboration

7 November 2003

1

Introduction

- HERMES is 6^{th} group to report evidence for the Θ^+ pentaguark
 - quasi-real photo production at high energy on deuterium target in inclusive $p K_s X$
- Features of analysis:
 - new RICH P-matrices (effic., contam.) derived using MC (Pythia)
 - MC (Pythia) simulation of background (very time consuming)
 - Θ^+ "toy Monte Carlo" (gives instrumental resolution and acceptance)
 - various systematic studies
 - provide more concise information related to its mass and isospin (wait for publication)

Experimental Evidence from HERMES

quasi-real photo production on deuterium target with decay mode: $\Theta^+{\to}\ p\ {\rm K}^0{}_{s}{\to}\ p\ \pi^+\pi^-$

Trigger: coincidence between hodoscope, preshower, calorimeter Events: at least $\pi^+\pi^-$ pair in coincidence with a proton

Data Set, Event Reconstruction, Cuts

- E_{beam} = 27.6 GeV, Target: pol/ unpol D
- Reaction: $eD \rightarrow p K_s X$
- Data set used: 1998-2000
- RICH identification of p and π
- Momentum range: π (1-15 GeV) p (4-9 GeV)
- Cuts: data quality, distance between two π , K_s p, Θ^+ beam
- K_s: decay length > 7 cm, 485 < K_s mass < 509 MeV
- Target vertex, fiducial volume cuts on all tracks
- Λ (1116) excluded: reject event if $M(\pi^-p)$ within 1σ of nominal Λ mass

Proton Identification

x 10 rely heavily on RICH N(A)=386 K 1200 • RICH performance sensitive to event topology -> determine PID efficiencies and cross contaminations 800 -> use Pythia MC contamination of K+ and n+ 90.0 80.0 80.0 400 0 9 10 10 0.04 1.12 1.08 $\mathbf{p}\pi^{-}$ (GeV) **Invariant mass** 0.02 0 4.5 5 5.5 6.5 7.5 8.5 6 momentum of p, GeV/c Lambda is well identified => K⁺ and π^+ contamination negligible protons are cleanly identified for $4 < P_p < 9 \text{ GeV}$ 7-November-2003 Wolfgang Lorenzon, JLab Workshop

1.16

$K_{\mbox{\scriptsize S}}$ Identification

- event selection: constraints on event topology to optimized yield of K_s peak in $M(\pi^+\pi^-)$ while minimizing bkg
- NO constraints optimized to increase significance of signal in final $M(p \pi^+\pi^-)$ -> standard statistical tests can be applied
- subject to all cuts that also appear in M($p \pi^+\pi^-$) spectrum
- K_s after applying all described cuts => well identified PDG value: 497.7 ± 0.03 MeV

 $M(p \pi^+\pi^-)$ Spectrum

- Excess at 1526 MeV
- Width of $\sigma = 7.5$ MeV dominated by detector resolution

$M(p \pi^+\pi^-)$ Spectrum with naïve Background Model

- Background approximated by 4th-order polynomial
- No known positive charged strangeness-containing baryon in this mass region to account for observed peak

Various (motivated) Background Models

- Polynomial background:
 - appropriate degree determined by using orthonorm. Chebyshev polynomials of various degree
- Pythia6 code tuned for HERMES kinematics:
 - contains no resonances ($\Theta^+\, {\rm or}\,\, \Sigma^{*+})$ in mass range 1.4 1.7 GeV
 - -> remaining strength due to known broad resonances plus new structure
 - MC for p not D: n still produced
 -> realistic mixing for D
- Mixed-event background:
 - non-resonant bkg involves large enough multiplicity so that 4-momenta
 - of K_s and p are largely uncorrelated
 - -> combine K and p from different events
 - contribution of resonances suppressed (only visible because of high
- 7-November-2003 relation between their decay particles), Wolfgang Lorenzon, JLab Workshop

- Naïve estimator: $\sigma = N_s / \sqrt{N_b} = 72 / \sqrt{164} = 5.6$
 - neglects uncertainty in background -> overestimates sign. of peak
 - statistics books: $\sigma = N_s / \sqrt{N_b + \operatorname{var}(N_b)}$ stress 2nd factor
- Second estimator: $\sigma = N_s / \sqrt{N_b + N_s} = 72 / \sqrt{236} = 4.7$
 - gives somewhat lower value
 - ??
- "Realistic" estimator: $\sigma = N_s / \delta N_s = 72/17.4 = 4.1$
 - N_s area of peak from fitting function, δN_s its fully correlated uncertainty
 - measures how far peak is away from zero in units of its own stand. dev.
 - all correlated uncertainties, incl. of bkg parameters, are accounted for

Detector Mass Calibrations

KP, Inv. Mass [GeV]

Reconstructed $\overline{\Lambda}(1116),~\Lambda^{*}(1520)$ in agreement with PDG ± 2 MeV

7-November-2003

starting offset

Comparison with other Experiments

World average: Θ^+ Mass: 1535 \pm 2.9 MeV (taken syst. uncertainty for DIANA and ITEP: \pm 3 MeV)

HERMES (prelim.) differs by 2.1σ from world average

Monte Carlo Simulation

- Simulate resonance at 1540 MeV with Γ = 2 MeV decaying to pK_S
 - study constraints imposed on decay products by kinematics and accept.
- Full detector simulation
- Results: Mass: 1540 \pm 0.3 MeV Width: σ =7.0 \pm 0.3 MeV

Θ^+ Isopsin (prelim.)

- No evidence for Θ^{++} peak in pK^* inv. mass distribution
- HERMES acceptance is 30x larger for pK^{+} (and pK^{-}) than for pK_{S}
- since production cross section unknown -> rel. production cross sections for members in multiplet unknown
- If about same -> strong evidence that ⊖+ is isosinglet 7-November-2003 Wolfgang Lorenzon, JLab Workshop

- Search for narrow exotic baryon resonance was performed
 - Target: Deuterium
 - Kinematics: quasi-real photo-production
 - Reaction: eD -> pK₅X
 - Mass: 1526 \pm 2 (stat) \pm 2.5 (sys) MeV
- Observed width of σ =7.5 MeV: dominated entirely by exp. resolution
 - $\Gamma <$ 20 MeV at 90% c.l.
- Isospin constrained by pK^{\star} invariant mass spectrum
- More details in paper coming soon

Experimental Evidence for Θ^+

After failing to find any convincing evidence for exotic states for over 30 years:

Experiments	Results		
	Mass	Width	Significance
	(MeV)	(Mev)	(σ)
LEPS	1540±10±5	Γ < 25	4.6±1
DIANA	$1539\pm2\pm$ "few"	$\Gamma < 8$	4.4
CLAS	$1542\pm2\pm5$	FWhM < 21	5.3±0.5
SAPHIR	1540±4±2	$\Gamma < 25$	4.8
ITEP (ν 's)	1533±5	$\Gamma < 29$	6.7
HERMES	1526±2±2.5	$\Gamma < 20$	5.6
World Average	1535±2.5		
Prediction	1530 Γ <	15 I=0	S=+1 $J^{P}=\frac{1}{2}^{+}$