Search for exotic Baryons at HERMES

Wolfgang Lorenzon (WINIVERSITY OF MICHIGAN) on behalf of the HERMES Collaboration

hermes W. Lorenzon

The HERMES Spectrometer

Beam: 27.6 GeV e⁺/e⁻ from HERA accelerator Track reconstruction: $\Delta p/p < 2\%$, $\Delta \theta < 0.6$ mrad

Particle ID: TRD, Preshower, Calorimeter (hadron/lepton sep.) dual radiator RICH (π , K, p separation)

Particle Identification

hadron/lepton separation

Combination of:

- > TRD
- calorimeter
- preshower

hadron identification

Dual radiator RICH

▶ aerogel: n=1.03
▶ C₄F₁₀ gas: n=1.0014

Event Reconstruction

$e^+ + D \rightarrow \Theta^+ + X \rightarrow pK_S^0 + X$

mes W. Lorenzon

Invariant Mass Distribution of $p\pi^+\pi^-$

- > events selected in a $\pm 2\sigma$ window about K_s peak
- Peak is observed at 1528 ± 2.6(stat) ± 2.1(syst) MeV in pK_s invariant mass distribution
- > Width, $\sigma = 8$ MeV, is observably larger than experimental resolution
- No known positively charged strange baryon in this mass region
- > Statistical significance is $3-5 \sigma$
- Three models of background were studied

PYTHIA6 and mixed-event backgrounds

- Filled histogram: PYTHIA6 MC (lumi normalized): No resonance structure from reflections of known mesonic or baryonic resonances
- Green histogram: mixed event background normalized to PYTHIA6: reproduces the shape of PYTHIA6 simulation
- Excited Σ* hyperons not included in PYTHIA6 lie below 1500 MeV and above 1550 MeV
- Mass= 1527 ± 2.3 MeV
- $ightarrow \sigma = 9.2 \pm 2 \text{ MeV}$
- Significance 4.3σ

Θ^+ or Σ^{*+} ?

Is our peak a previously missing Σ^{*} or a pentaquark state?
 If peak is Σ^{*+} ⇒ also see a peak in M(Λπ⁺)

but no Σ^* s (1480, 1560, 1580, 1620) too!!!! should we say all bumps in pK_s spectrum are pentaquarks?

Further background suppression - additional π

signal/background: 1:3

signal/background: 2:1 same kinematic cuts

What is the Isospin of the Θ^+ ?

In the decay channels:

- ▶ pK⁻: clear Λ(1520) peak at 1522.7 MeV
- pK⁺: no peak, zero counts at 91% C.L.

Not isotensor → probably isosinglet

Width of Peak

hermes W. Lorenzon

Invariant Mass Distribution of $\overline{p}\pi^+\pi^-$

- ► Goal: compare cross section ratio of Θ^- to Θ^+ production with ratio of $\overline{\Lambda}(1520)$ to $\Lambda(1520)$ production (~1:5) or $\overline{\Xi}^0(1530)$ to $\Xi^0(1530)$ production (1:4)
 - \rightarrow shed light on production mechanism
- > same event selection and kinematic constraints as for $p\pi^+\pi^-$
- Gaussian plus 3rd order polynomial, width of Gaussian fixed
- no peak is observed
 - hint that in HERMES kinematics targetremnant plays an important role different to ZEUS, which has basically the same number of Θ^+ and Θ^- .

Search for reported Ξ^{--} (1862) Exotic

W. Lorenzon

Ξ-- (1862) search (II)

$> M(p\pi^{-}\pi^{-}\pi^{-})$ spectrum

➤ mixed-event background
 ➤ No Ξ peaks around 1860 MeV
 ➤ Ξ⁰(1530) seen, as expected

W. Lorenzon

 $> M(p\pi^+\pi^-\pi^-)$ spectrum

- > upper limit $\sigma(\Xi^{--})$: 1.0–2.1 nb
- > upper limit $\sigma(\Xi^0)$: 1.2–2.5 nb

$$\succ \sigma(\Xi^{0}(1530)) = 8.8-24 \text{ nb}$$

Production Cross Sections

 $\sigma(\Theta^+) = 100-220 \text{ nb} \pm 25\%(\text{stat})$ (add. x2 from prod. kinematics)

hermes W. Lorenzon

OR: \textbf{p}_t and \textbf{p}_z spectra from $\Lambda_{\textbf{exp}}$

 $\sigma(\Lambda(1520)) = 62 \pm 11 \text{ nb}$ $\sigma(\Xi^0(1530)) = 8.8-24 \text{ nb}$

Production process at HERMES ?

> can additional pion come from exclusive processes?

> associated K^- or K_s from exclusive processes goes backward

— even decay pions from K_s are inaccessible

- PID threshold requires $p(\Theta^+) > 7 \text{ GeV/c}$

tagged pions events cannot come from these exclusive processes

- \Rightarrow production process has to be at least partially inclusive
 - inclusive processes increase with higher energy
 - exclusive processes decrease with higher energy

hermes W. Lorenzon

Comparison with World Data

W. Lorenzon

Decay channel:

 $\mathbf{nK}^+ \mathbf{pK}^0_{\mathbf{s}}$

World Average: 1531.1±2.1 MeV

Observation of peak in two decay channels in same experiment

would be convincing!

Summary – HERMES results on 5q exotics

Pentaquark05 - Oct 2005

 $\stackrel{1.9}{M}(\Xi^{-}\pi^{+})^{2} \ [GeV] \stackrel{2.1}{}$

Ξ"(1860)

1.7

1.7

1.8

1.8

 $\Xi^{0}(1860)$

 ${}^{1.9}_{M(\Xi^-\pi^-)}{}^2 [GeV]^{2.1}_{GeV]}$

Conclusions and Outlook

> Direct reconstruction of pK_s invariant mass $eD \rightarrow \Theta^+ + X \rightarrow pK_s^0 + X$

> Mass: $M = 1528.2 \pm 2.6(stat) \pm 2.1(syst) MeV$

Intrinsic Width: $\Gamma_{\Theta^+} = 17 \pm 9 \pm 3 \text{ MeV}$

Significance: ~ 4σ

- $\triangleright \Theta^+$ is probably an isosinglet
- > additional π improves signal/background,
 - \rightarrow eliminates K_S contamination from various processes
- Production process is at least partially inclusive
- > No evidence observed for Ξ^{--} or Ξ^{0} near 1860 MeV

Anticipate x5 higher statistics by summer 2007 W. Lorenzon
Pen