

Towards High Precision Photometry

Wolfgang Lorenzon^{*} University of Michigan

^{*}N. Barron, K. Beyerlein, M. Borysow, M. Brown, W. Lorenzon, Mike Schubnell, G. Tarlé

Towards High Precision Photometry

- Project µm-size NIR spots through dewar window onto detectors
- Measure intra-pixel sensitivity variation
 - ⇒ demonstrate required photometric accuracy
- Measure lateral charge diffusion and confirm capacitive coupling measurements

List of NIR sensors

NIR sensor	Manufacturer	Specifications	QE
InGaAs	Raytheon	Virgo 1k	70-80%
HgCdTe	Raytheon	Virgo 598141	80%
HgCdTe	Rockwell	H2RG #102	90-95% w/AR coat
HgCdTe	Rockwell	H2RG # 40	70%
HgCdTe	Rockwell	Banded Array #25	20-30%

pot matic

Brief History

- Start
 - REU Summer 2003 project (M. Borysow)
 - base initial design on LBL pinhole projector (visible)
 - adapt for NIR and improve design (senior thesis project: W2004)
- Improvements
 - REU Summer 2004 project (N. Barron)
 - installed linear encoder on z-axis
 - improve motion control and analysis software (M. Borysow)
- Characterization of NIR devices
 - line-spread functions (LSF)
 - one and two dimensional pixel response functions (PRF)
 - multiple pixel scans (honors thesis project: W2005)

Results for RVS and RSC devices

- lateral charge diffusion (M. Brown)
- capacitive coupling
- photometry simulations (-> publication)

Characterizing beam spots

- A knife edge is placed ~3 mm above the detector surface
- Spot-O-Matic is scanned across knife edge in x-y while focusing in z to minimize the spot size and determine the line spread function (LSF)

Characterizing pixels

RSC H2RG #102

- <u>Virtual knife edge</u> scans (pixel boundary) used to focus Spot-o-Matic onto detector surface
- Intensity profile is a 1-dim convolution of Spot-o-Matic LSF with pixel response function
- Edge transition is increased from the σ = 1.4 µm spot size obtained from the knife-edge scan

Pixel Response Profile (RSC H2RG #102)

2D scan at best focus. Pixel scan is convolution of the PRF with the PSF of the spot

single pixel response is generally very uniform

summing pixels gives a smooth response, with dips tending to fall on pixel boundaries

Pixel Response Profile (RVS 141SR)

Intra-Pixel Variation

H2RG #40 (RSC) with anomalous substructure

appeared to be perfectly fine detector:

- 70% QE, 35 e⁻ read noise, 0.05 e⁻/px/s DC

Effect on photometry under study!

Pixel Response

 $(\sim 0.25\%$ contribution)

"De-convolution"

RSC H2RG #102

start with square PRF (18 μ m) convolve with PSF (1.4 μ m) add charge diffusion (1.7±.02 μ m) add capacitive coupling (2.2±.1%) compare to data let's fit also the pixel width: square PRF (17.8 \pm .1 µm) PSF (1.4 µm) charge diffusion (1.7 \pm .02 µm) capacitive coupling (2.4 \pm .1%) published value: 2.2 \pm .1%

Comparison of NIR sensors

Intra-Pixel Variation in 1D

scan over 7 adjacent pixels

response of individual pixels

- simple addition of adjacent pixels restores photometry to better than 2%
- Spot-o-matic can detect sensitivity variations at percent level or below

Conclusions

- Spot-o-Matic has turned into a reliable tool
- Detailed comparison among two vendors now possible
- InGaAs and HgCdTe devices show a very flat pixel response with ~2-3 μm edge effects dominated by diffusion
- A simple addition of adjacent pixels restores photometry to better than ~2%
- Will turn our attention to
 - effect of intra-pixel variations on photometry
 - publish Spot-o-Matic paper this summer