The Longitudinal Polarimeter at HERA

W. Lorenzon (Michigan) Precision Electron Polarimetry at Jlab

(10 June 2003)

- Electron Polarization at HERA
- Laser System & Calorimeter
- Statistical and Systematic Precision

1

- Laser Cavity Project
- Summary and Outlook

Electron Polarization at HERA

Sokolov Ternov Effect

- P_{ST} = 0.924 for an ideal, flat machine, independent of any machine parameter
- τ_{sT} = 37 min for HERA @ 27.5 GeV (prop. 1/ γ^5 , R³)
- $\boldsymbol{\cdot}$ depolarization effects (τ_{D}) in a real machine

 \rightarrow can substantially reduce P_{max} :

$$P_{\max} = P_{ST} \frac{\tau_D}{\tau_{ST} + \tau_D}$$

 \rightarrow and effective build-up time constant τ :

$$\tau = \tau_{ST} \frac{\tau_D}{\tau_{ST} + \tau_D}$$

• P_{ST} and τ_{ST} calculable from first principles \rightarrow a simultaneous measurement of P_{max} and τ provides a calibration method: (P_{max})

$$P_{\max} = \tau \left(\frac{P_{ST}}{\tau_{ST}} \right) = k \cdot P_{meas}$$

HERMES Spin Rotators

$$\Delta \phi_{spin} = G \gamma \Delta \phi_{orbit}$$

Spin Tune at 27.5 GeV Gγ = E/(0.440 GeV) = 62.5

$\Delta \phi_{spin}$	$\Delta \phi_{ m orbit}$ (mrad)
45 ⁰	12.5
90 ⁰	25
180^{0}	50

Compton Polarimetry at HERA

Operating Modes and Principles

Laser Compton scattering off HERA electrons

LPol

CW Laser - Single Photon

Pulsed Laser - Multi Photon

Flip laser helicity and measure scattered photons

P_y=0.59

Spatial Asymmetry

P_z=0.59

Rate or energy Asymmetry

Statistical Error $\Delta P=1\%$ per minute @ HERA average currents

Experimental Setup - Overview

Experimental Setup - Calorimeter Calorimeter $NaBi(WO_4)_2$ crystal calorimeter position 2 x 6 mm Pb plates (preshower) Compton NBW-crystal photons aluminized mylar HERA-e movable perforated Ni-foil photomultiplier

 $\begin{array}{rll} \mbox{segmentation} & \rightarrow \mbox{position detection of Compton photons} \\ \mbox{NaBi}(WO_4)_2 \ \mbox{crystals:} \ 22 \times 22 \times 200 \ \mbox{mm}^3 \\ \mbox{ρ} & : \ 7.57 \ \mbox{g cm}^{-2} \\ \mbox{R_M} & : \ 2.38 \ \mbox{cm} \\ \mbox{σ_t} & : \ 12 \ \mbox{ns} \\ \mbox{n} & : \ 2.15 \end{array}$

Experimental Setup - Laser System

- M1/2 M3/4 M5/6: phase-compensated mirrors - laser light polarization measured continuously in box #2

Experimental Setup - Details

beam expander

calorimeter position

Laser Control - COP

Automatic Control

- Synchronizing laser and electron beam
- optimize luminosity
- optimize λ polarization
- center γ beam on calorimeter
- control & readjust all

parameters: ...

laser spots on all mirrors using CCD cameras

Polarimeter Operation I

Single-Photon Mode

Advantages:

- large asymmetry: 0.60 (max)
- easy comparison to $d\sigma/dE$

Disadvantage:

- dP/P = 0.01 in 2.5 h (too long)

 $A_{s}(E_{\gamma}) = (\sigma_{3/2} - \sigma_{1/2}) / (\sigma_{3/2} + \sigma_{1/2})$ $= P_{e} P_{\lambda} A_{z}(E_{\gamma})$

Polarimeter Operation II

Multi-Photon Mode

Advantages:

eff. independent of brems. bkg
and photon energy cutoff
dP/P = 0.01 in 1 min

Disadvantage:

 no easy monitoring of calorimeter performance

$$A_{m} = (I_{3/2} - I_{1/2}) / (I_{3/2} + I_{1/2})$$

= $P_{e} P_{\lambda} A_{p}$

$$A_{p} = (\Sigma_{3/2} - \Sigma_{1/2}) / (\Sigma_{3/2} + \Sigma_{1/2})$$

= 0.184 (if detector is linear)

Polarization Determination

$$A_{p} = (\Sigma_{3/2} - \Sigma_{1/2}) / (\Sigma_{3/2} + \Sigma_{1/2})$$

= 0.193 (for crystal calorimeter)

$$\Sigma_i = \int_{E_{\min}}^{E_{\max}} (d\sigma/dE)_i E \cdot r(E) dE$$

Question:

Is response function linear over full single to multiphoton range?

Polarization Performance

HERA: 220 bunches separated by 96 ns 174 colliding + 15 non-colliding = 189 filled bunches

20 min measurement dP/P = 0.03 in each bunch time dependence: helpful tool for tuning

"Non-Invasive" Method

Possible to 'empty' an electron bunch with a powerful laser beam at HERA

A large Systematic Effect - Solved

In multi-photon mode: 1000 γ 's \rightarrow 6.8 TeV in detector

Protect PMT's from saturation → insert Ni foil in 3mm air gap

Problem:

NBW crystals are 19 X_0

small shower leakage with large analyzing power

 $A_p(w/foil) = 1.25 \times A_p(w/ofoil)$

No light attenuators are used since early 1999

Systematic Uncertainties

Source	$\Delta P_e / P_e$ (%)	
	(2000)	
Analyzing Power Ap	\pm 1.2 lpha	
 response function single to multi photon transition 	(±0.9) (±0.8)	
A _p long-term instability	\pm 0.5 $^{\beta}$	
 PMT linearity (GMS system checked) 	(±0.4)	
Gain mismatching	\pm 0.3 $^{\gamma}$	
Laser light polarization	± 0.2	
Pockels cell misalignment	\pm 0.4 $^{\gamma}$	
- λ/2 plate (helicity dep. beam shifts) - laser-electron beam overlap	(±0.3)γ (±0.3)γ	
Electron beam instability	\pm 0.8 $^{\gamma}$	
 electron beam position changes electron beam slope changes 	(±0.6)γ (±0.5)γ	
Total	± 1.6 δ	

 $^{\alpha}$ new sampling calorimeter built and tested at DESY and CERN

^β from comparison with prototype sampling calorimeter

 γ statistics limited

 $^{\delta}$ published in NIM A 479, 334 (2002)

New Sampling Calorimeter

Test beam results 3000 ADC output **CERN** 2500 DESY 2000 1500 1000 500 20 2.5 5 7.5 10 12.5 15 17.5 Incident Energy (GeV)

Incident Energy (GeV)

New Sampling Calorimeter - Details

side view

beam view

- sampling & NBW calorimeters sit
 on movable table (x-y)
 - → fast switching possible
- one calorimeter is always protected from synchrotron and bremsstrahlung radiation

Systematic Uncertainties

Source	$\Delta P_e/P_e$ (%)	$\Delta P_e / P_e$ (%)
	(2000)	(>2002)
Analyzing Power A _p	\pm 1.2 $^{\alpha}$	± 0.8
 response function single to multi photon transition 	(0.9) (0.8)	(+-0.2)α (+-0.8)
A _p long-term instability	± 0.5	± 0.5
Gain mismatching	\pm 0.3 $^{\beta}$	± 0.2
Laser light polarization	± 0.2	± 0.2
Pockels cell misalignment	\pm 0.4 $^{\beta}$	± 0.2
Electron beam instability	\pm 0.8 $^{\beta}$	± 0.4
Total	± 1.6	± 1.1

 $^{\alpha}$ new sampling calorimeter built and tested at DESY and CERN $^{\beta}$ statistics limited

expected precision: (multi-photon mode)

Systematic Uncertainties - II

Longitudinal polarization with unpolarized electron beam (27.6 GeV) — measure false asymmetries (IP not optimal, HERA clock unstable)

Polarization-2000

HERMES, H1, ZEUS and Machine Group

Goal: Fast and precise polarization measurements of each electron bunch

Task: major upgrade to Transverse Polarimeter (done) upgrade laser system for Longitudinal Polarimeter (in progress)

beam intensity after cavity

A Comparison of Different Polarimeters

	PL	e-y rate	γ rate (n _{γ})	(δP_e) _{stat}	$(\delta P_e)_{syst}$
LPOL:	33MW	0.1kHz pulse laser	1000 γ/pulse multi-γ mode i.e. 0.01 γ/bc (bc=bunch crossing)	1%/min (all bunches) 1%/(>30min) (single bunch)	~2%
TPOL:	10W (cw	10MHz cw laser v=continuous wa	0.01 γ/bc single-γ mode ve)	1-2%/min (all bunches)	~4% → <2% (upgrade)
<u>New LPOL:</u>	5kW	10MHz cw laser	1 γ/bc few-γ mode	0.1%/6s (all bunches)	per mill
Fabry-Perot Cavity				1%/min (single bunch)	
0.7W				Expected precision	

(courtesy F. Zomer)

Photon Detection and Systematic Uncertainty of P_e

New LPOL (few-photon mode):

Compton and Bremsstrahlung edges clearly visible

Background determination and Calibration easy $(\delta P_e)_{syst}$: per mill level expected

Existing LPOL (multi-photon mode):

yes Up to 1000 γ produced per pulse Signal/background ratio improved > 5TeV measured in the detector! Calibration difficult Non-linearity → main syst. error (courtesy F. Zomer)

Polarization after Lumi Upgrade

TPOL/LPOL Ratio

Still under investigation

LPOL:

TPOL:

various analysis codes give different answers!

good fill

Strategy:

investigate ratio for good and bad fills and look for any dependencies

Conclusions

- Longitudinal Polarization is currently measured with
 - 1% statistical uncertainty per minute (for all bunches)
 - 1.6% systematic uncertainty (with NBW calorimeter)
 - ~1% systematic uncertainty (with new Sampling calorimeter)
- After upgrade to optical cavity is finished,
 - systematic uncertainty: 1% or less.
 - statistical uncertainty: 1-2% for each individual bunch
- Longitudinal Polarimeter measures rate (energy) differences
- Compton Scattering is possible for $E_{\text{beam}}\gtrsim 1~\text{GeV}$
 - large asymmetries: A ~ $E_e E_\lambda$
 - polarization measured/monitored continuously