Electron Beam Polarimetry for EIC/eRHIC

W. Lorenzon (Michigan)

1

- Introduction
- Polarimetry at HERA
- Lessons learned from HERA
- Polarimetry at EIC

V.Ptitsyn, C-AD

EIC Objectives

- e-p and e-ions collisions
- 5-10 GeV electrons: 25-250 Gev protons: 100 Gev/u Au
- Luminosity:

 $\blacktriangleright L \approx 3 \cdot 10^{32} \frac{1}{\text{sec·cm}^2} \qquad \text{for e-p collisions}$

> $L \approx 10^{30} - 10^{31} \frac{1}{\text{sec} \cdot \text{cm}^2}$ for e-Au collisions

- Polarized electron and proton beams
- Longitudinal polarization at collision point: 70%
- 35 nsec minimum separation between bunches

How to measure Polarization of e⁻, e⁺ beams?

• Macroscopic:

- polarized electron bunch: very week dipole (~10⁻⁷ of magnetized iron of same size)

Microscopic:

- spin-dependent scattering processes simplest \rightarrow elastic processes:
 - cross section large
 - simple kinematic properties
 - physics quite well understood
- three different targets used currently:
 - 1. e⁻ nucleus: Mott scattering
 - 2. e^{\pm} electrons: Møller (Bhabha) Scat. MeV GeV
- 100 300 keV

> GeV

3. e[±] - photons: Compton Scattering

3

Other Labs employing Electron Polarimeters

Many polarimeters are or *have been* in use:

Compton Polarimeters:

LEP	mainly used as machine tool for resonant depolarization
DESY	HERA, storage ring 27.5 GeV (two polarimeters)
Jlab	Hall A < 8 GeV
Bates	South Hall Ring < 1 GeV
Nikhef	AmPS, storage ring < 1 GeV

• Møller / Bhabha Polarimeters:

Bates	linear accelerator < 1 GeV
Mainz	Mainz Microtron MAMI < 1 GeV
Jlab	Hall A, B, C

Electron Polarization at HERA

Compton Polarimetry

non-invasive measurement

 $E_{e}^{10^{1}}_{(GeV)}$ Asymmetry: $A \propto E_{e} E_{\lambda}$

EIC

Jlab

HERA

Very good polarimetry at high energy or/and high currents (storage rings)

 10^{2}

Compton Polarimetry at HERA

Operating Modes and Principles

Laser Compton scattering off HERA electrons

CW Laser - Single Photon

Pulsing Laser - Multi Photon

Flip laser helicity and measure scattered photons

P_y=0.59

Spatial Asymmetry

 P_z=0.59

Rate or energy Asymmetry

Statistical Error $\Delta P=1\%$ per minute @ HERA average currents

Experimental Setup - Laser System

- M1/2 M3/4 M5/6: phase-compensated mirrors - laser light polarization measured continuously in box #2

Experimental Setup - Details

Systematic Uncertainties

Source	$\Delta P_e/P_e$ (%)	$\Delta P_e/P_e$ (%)
	(2000)	(>2003)
Analyzing Power A _p	+- 1.2α	+- 0.8
 response function single to multi photon transition 	(0.9) (0.8)	(+-0.2) (+-0.8)
A _p long-term stability	+- 0.5	+- 0.5
Gain mismatching	+- 0.3 ^β	+-0.2
Laser light polarization	+- 0.2	+-0.2
Pockels Cell misalignment	+- 0.4 ^β	+-0.2
Electron beam instability	+- 0.8 ^β	+-0.3
Total	+-1.6	+-1.0

 $^{\alpha}\text{new}$ sampling calorimeter built and tested at DESY and CERN $^{\beta}\text{statistics}$ limited

expected precision (multi-photon mode)

Polarization-2000

HERMES, H1, ZEUS and Machine Group

Goal: Fast and precise polarization measurements of each electron bunch

Task: major upgrade to Transverse Polarimeter (done) upgrade laser system for Longitudinal Polarimeter (in progress)

(courtesy F. Zomer)

Polarization after Lumi Upgrade

Lessons learned from HERA

- Include polarization diagnostics and monitoring in design of beam lattice
 - more crucial for ring option than for linac option
 - measure beam polarization continuously \rightarrow minimize systematic errors
- Two (three?) options to measure polarization
 - Compton Scattering (\geq 5 GeV):
 - \cdot Longitudinal Polarization: rate or energy asymmetries (\lesssim 30%)
 - \bullet Transverse Polarization: spatial asymmetries (\lesssim 50 μm)
 - Møller Scattering (100 MeV many GeV):
 - \cdot under investigation: depolarization (\propto I²) due to beam RF interaction with the e⁻ spins

Consider three components

- laser (transport) system:
 - conventional transport system: laser accessible at all times, robust, radiation damage to mirrors, proven technology
 - optical cavity: laser not accessible at all times, expensive, delicate, ring operation ?
- laser-electron interaction region:
 - minimize bremsstrahlung and synchrotron radiation: introduce a chicane
 - optimize Compton rate: small crossing angle
- Compton detector:
 - radiation hard, fast (<35ns): Cerenkov detectors superior to scintillation detectors
 - $\boldsymbol{\cdot}$ record energy and position of individual Compton events

EIC: Collider Layout

V. Ptitsyn (BNL), A-C D

- Proposed by BINP and Bates
- e-ring is ¹/₄ of RHIC ring length
- Collisions in one interaction point
- Collision e energies: 5-10 GeV
- Injection linac: 2-5 GeV
- Lattice based on "superbend" magnets
 - polarization time: 4-16 minutes
- Conventional magnets (Sokolov-Ternov)
 - polarization time: 10-320 minutes
- 25-250 GeV protons,
 100 GeV/u Au ions (+79)

Polarimetry at EIC

- Ring Ring Option
 - measure beam polarization continuously -> minimize systematic errors (~1%)
- Compton Scattering (5-10 GeV):
 - Longitudinal Polarization & Transverse Polarization
 - -> two independent measurements with vastly different systematic uncertainties
- Laser (transport) system
 - either conventional transport system or optical cavity
 - -> wait for experience at HERA (both systems available)
- Laser-electron interaction region
 - introduce a chicane to minimize bremsstrahlung and synchrotron radiation
- Compton detector
 - needs to be radiation hard and fast (<35ns)
 - record energy and position of individual Compton events
 - -> operate in single or few photon mode
 - -> monitor linearity of detector: brems edge, Compton edge, asymmetry zero crossing
 - detect scattered electron and photon: in coincidence -> suppress background

Include Electron Beam Polarimetry in Lattice Design