# Nuclear Transparency in Exclusive $\rho^{\rm 0}$ Production at HERMES

W. Lorenzon (Michigan)

1

hermes Collaboration

- Introduction
  - Diffractive  $\rho^0$  production
- Nuclear Effects
  - $b_N(Q^2)$  variation ( $\gamma$  shrinkage)
  - coherent/incoherent cross section ratios
  - I<sub>c</sub>-dependence
  - Q<sup>2</sup>-dependence (Color Transparency)
- Summary

# HERMES Experiment at HERA (2003)



The HERMES Detector



- Forward Spectrometer: 40 < 0< 220 mrad,  $\delta P/P$  (0.7-1.3)%,  $\delta \theta$  < 0.6 mrad
- Electron Identification: efficiency  $\geq$  98% with hadron contamination  $\leq$  1%
- Calorimeter:  $\delta E/E = 5\%/\sqrt{E[GeV]}$
- RICH (1998):  $\pi^{+-}$ , K<sup>+-</sup>, p separation overfull kinematic range

### Exclusive Diffractive $\rho^0$ Electroproduction

 $\rho^{0}$ ,  $\rho^{\pm}$  have  $I(J^{PC}) = 1(1^{--}) [ N.B.: \gamma has 0, 1(1^{--}) ]$ 

• 
$$M_{\rho} = 770 \text{ MeV}, \Gamma_{\rho} = 150 \text{ MeV} (c\tau = 1.3 \text{ fm})$$
  
•  $\rho^{0}$  content is  $(u\overline{u} + d\overline{d})/\sqrt{2}$   
Dominant time-ordered  
diagram (lab frame):  
 $\overline{e'}(k')$   
 $\overline{e}(k)$   
 $\gamma^{*}(q)$   
 $\overline{q}$   
 $T(P)$   
 $T'(Y)$ 

• Exclusive:  $M_{T'} = M_T$ 

• Diffractive:  $d\sigma/dt \sim e^{bt}$  (note t<0)

- Incoherent:  $\gamma^* N \rightarrow \rho^0 N$ ,  $b_N \approx 7 \text{ GeV}^{-2}$  (for A>1, this is nuclear inelastic)
- For A>1, coherent:  $\gamma^* A \to \rho^0 A$ ,  $b^{{}_{14}}_N \approx 57~GeV^{-2}$

### **Evolution of Virtual Quantum States**

- Virtual state such as  $\gamma^* \rightarrow q\overline{q}$  in  $\gamma^*$ -induced reaction
- transverse size of  $q\overline{q}$  wave packet:

 $r_{q\overline{q}} \sim 1/\langle Q^2 \rangle \simeq 0.4 \text{ fm}$ 

• coherence length  $l_c$ : finite propagation distance (lifetime) for  $q\overline{q}$ 

$$l_c = \frac{2 \cdot v}{Q^2 + M_{q\bar{q}}^2} = 0.6 \div 8 \text{ fm}, \quad \langle l_c \rangle = 2.7 \text{ fm}$$

- measure interactions with perturbing medium at different  $l_c$
- study space-time evolution of VQS
- for exclusive  $\rho^0$  production:  $M_\rho$  dominates  $M_{q\bar{q}} \quad \text{and} \; \mathbf{l_c} \\ \Rightarrow \text{ can measure explicit } \mathbf{l_c}\text{-dependence}$
- formation length  $l_f$ : distance needed to evolve to normal-size  $\rho^0$

$$l_f = \frac{2 \cdot v}{M_{V'}^2 - M_V^2} = 1.3 \div 6.3 \text{ fm}, \quad \langle l_f \rangle = 3.5 \text{ fm}$$

- governing scale for Color Transparency



- Vanishing of h N interaction cross section for h produced in high  $Q^2$  exclusive process
- Requirements: Quantum Mechanics, Relativity, Nature of Strong Interaction
- $h = q\overline{q}$  QED analogy in  $e^+e^-$  (Chudakov-Perkins effect)
  - h = qqq unique to QCD!



Perkins (1955) [ $\pi_0 \rightarrow e^+ e^- \gamma$ ]

e<sup>+</sup>e<sup>-</sup> pairs (~ 200 GeV) make tracks in photographic emulsions

Measure ionization density vs. distance from production





- Vanishing of h N interaction cross section for h produced in high  $Q^2$  exclusive process
- Requirements: Quantum Mechanics, Relativity, Nature of Strong Interaction
- $h = q\overline{q}$  QED analogy in  $e^+e^-$  (Chudakov-Perkins effect)
  - h = qqq unique to QCD!
- No unambiguous signature found for the onset of CT yet !

### Color Transparency in A(p,2p) - BNL Results



E-0850, Leksanov et al. PRL 87, 212301 (2001)

#### Shaded are is Glauber calculation

solid line is 1/oscillation in p-p scattering

A(p,2p) may remove long-distance component in p-p scattering

(Nuclear Filtering)

### Color Transparency in A(e,e'p) - SLAC/JLab Results



E94-139, Garrow et al. PR C66, 044613 (2002)

Constant Value fits for  $Q^2>\!\!2~GeV^2$   $\rightarrow \chi^2/df\approx 1$ 

Dashed line is correlated Glauber calculation (Panharipande at al)

 $Q^2$  dependence consistent with standard Glauber

### Color Transparency in $A(\mu,\mu'\rho^0)$ - FNAL Results

 $E_{\mu}$  = 470 GeV; A = H, D, C, Ca, Pb



E665, Adams et al. PRL 74, 1525 (1995)

**E665 fit**: Fit to  $\sigma_A(Q^2) = \sigma_N(Q^2) A^{\alpha}$ . "The probability of  $\alpha$  being independent of Q<sup>2</sup> is 2.7%."

Skeptical fit: assumes  $\alpha \neq f(Q^2)$ ,  $\chi^2/df = 10.0/11=0.91$ , with  $\alpha=0.69$ 

### Color Transparency in $A(\pi,di-jet)$ – FNAL Results



 $\alpha > 0.76$  from pion-nucleus total cross sections

E791, Aitala et al. PRL 86, 4773 (2001)

Coherent  $\pi^+$  diffractive dissociation at  $T_{\pi}$ =500 GeV/c



Parameterized as  $\sigma(A)$ =  $\sigma_0 A^\alpha$  , using  $^{12}C$  and  $^{195}\text{Pt}$  nuclei, with  $Q^2 \geq 4k_T{}^2$ 

- Vanishing of h N interaction cross section for h produced in high  $Q^2$  exclusive process
- Requirements: Quantum Mechanics, Relativity, Nature of Strong Interaction
- $h = q\overline{q}$  QED analogy in  $e^+e^-$  (Chudakov-Perkins effect)
  - h = qqq unique to QCD!
- No unambiguous signature found for the onset of CT yet !
  - A(p,2p) Oscillation in Transparency data Leksanov et al. PRL 87, 212301 (2001)
     A(e,e'p) Consistent with conventional nuclear physics Garrow et al. PR C66, 044613 (2002)
     A(I,I' ρ<sup>0</sup>) Coherence/Formation length Issues E665, Adams et al. PRL 74, 1525 (1995)
  - A( $\pi$ ,di-jet) claims full CT at Q<sup>2</sup>  $\approx$  10 GeV<sup>2</sup>, but only A-dependence

E791, Aitala et al. PRL 86, 4773 (2001)

- There is more at stake:
  - CT required for strict validity of factorization in deep exclusive processes  $\Rightarrow$  essential for access to General Parton Distributions

# Color Transparency and $\rho^0$ Leptoproduction

Prediction that in exclusive reactions, ISI and FSI vanish at high  $Q^2$ , v:



|                                           | (p,2p) | (e,e'p)          | (l,l'p <sup>0</sup> ) |
|-------------------------------------------|--------|------------------|-----------------------|
| Small size Config. (high Q <sup>2</sup> ) | ?      | ?                | Yes                   |
| Color Screening                           | Yes    | <mark>Yes</mark> | Yes                   |
| $t_{exp} = \gamma \tau_{exp}$ (high v)    | small  | small            | Large                 |
| $(E_m,p_m)$ sensitivity                   | Yes    | Yes              | No                    |
| $\sigma(v,Q^2)$ smooth                    | No     | Yes              | Yes                   |
| Good QED or QCD model                     | No     | Yes              | Yes                   |
| $I_c$ ambiguity                           | No     | No               | Yes                   |

## Exclusive Diffractive $\rho^0$



#### Main cuts:

- \* exclusive: -0.4 GeV  $< \Delta \text{E} <$  0.6 GeV
- diffractive: -t'  $< 0.4 \; GeV^2$
- + select mass: 0.6 GeV  $\,<\,M_{\pi\pi}\,<\,1\,\,\text{GeV}$
- eliminate background: 1.04 GeV  $< M_{KK}$

#### Kinematics:

- $Q^2 = 0.6 \div 6 \text{ GeV}^2$ ,  $\langle Q^2 \rangle = 1.7 \text{ GeV}^2$
- W = 3.0 ÷ 6.5 GeV, <W> = 4.9 GeV
- x<sub>bj</sub> = 0.01 ÷ 0.35, <x<sub>bj</sub>> = 0.07
- $\nu = 5 \div 24 \text{ GeV}, \langle \nu \rangle = 13.3 \text{ GeV}$

## t' Distributions



| • For <sup>14</sup> N:                                                                                                  |    |  |
|-------------------------------------------------------------------------------------------------------------------------|----|--|
| - for -t' $\leq$ 0.045 GeV <sup>2</sup>                                                                                 |    |  |
| coherent $ ho^{ m 0}$ dominates                                                                                         |    |  |
| – for -t' $\geq$ 0.09 GeV <sup>2</sup>                                                                                  |    |  |
| incoherent $ ho^{_0}$ dominates                                                                                         |    |  |
| • incoherent: $b_N \approx 7 \ GeV^{-2}$                                                                                |    |  |
| • $b_A \approx \frac{1}{3} \left( r_A^2 + r_{q\overline{q}}^2 \right)$ (e <sup>bt</sup> represents elast F.F., squared) | ic |  |
| <ul> <li>b<sub>N</sub> of various nuclei consistent with<br/>hydrogen value</li> </ul>                                  | ۱  |  |

Size of Nuclei



$$b \approx \frac{1}{3} \left( r_A^2 + r_{q\overline{q}}^2 \right)$$

- in agreement with world data of nuclear size measurements,  $r_A^2 \sim A^{2/3}$ H. Alvensleben at al., PRL 24, 786 (1970)
- r<sub>A</sub> dominates

# b<sub>N</sub> (Q<sup>2</sup>) – "Photon Shrinkage"



$$b \approx r_{q\bar{q}}^2$$

 size of virtual photon controlled via Q<sup>2</sup>

# Q2 dependence of $\sigma_{\rm coh}$ / $\sigma_{\rm incoh}$



 $r^{He}=1.9 \text{ fm} r^{N}=2.5 \text{ fm} r^{Ne}=2.7 \text{ fm} r^{Kr}=5.5 \text{ fm}$ 

Very strong Q<sup>2</sup>-dependence of ratio  $\Rightarrow$  have to study coherence length effects

# Coherence Length Dependence of ISI

Initial State Interactions (ISI) of photon's hadronic components Strength of the ISI depend on  $I_c$  [K. Gottfried and D.r. Yennie, PR 182, 1595 (1969)]

•  $l_c \ll r_A \Rightarrow$  weak electromagnetic ISI (naïve expectation):

• 
$$I_c \gg r_A \Rightarrow$$
 hadronic ISI:



### Incoherent Nuclear Transparency T<sub>A</sub>

- Nuclear transparency T  $\rightarrow$  search for Color Transparency
- $\boldsymbol{\cdot}$  Without ISI and FSI, incoherent  $\boldsymbol{\sigma}_{A}{=}A\;\boldsymbol{\sigma}_{N}$
- $\boldsymbol{\cdot}$  Incoherent nuclear transparency:  $\textbf{T}_{\textbf{A}}{\equiv}~\sigma_{A}/A~\sigma_{N}$ 
  - effect of ISI of  $\gamma^{\star}$ ,  $q\overline{q}$  and FSI of  $\rho^{0}$
  - if ISI and FSI factorize  $\Rightarrow T_A$  = probability of transmitting  $\gamma^*(q\overline{q})$  and  $\rho^0$  unscathed
- ISI increase with lifetime  $I_c$  of  $q\overline{q}$  fluctuation
  - $\Rightarrow$  T\_A should decrease with onset of hadronic ISI at  $\rm I_c \geq 1~fm$

 $\begin{array}{l} \text{(note: } \sigma_{\rho \mathrm{N}} \approx \text{ constant for } \nu > 1 \text{ GeV} \\ \text{expect } \sigma_{\mathrm{n}} \approx \sigma_{\mathrm{H}} \Rightarrow \text{use } \sigma_{\mathrm{N}} \texttt{=} \sigma_{\mathrm{H}} \text{)} \end{array} \qquad \qquad T_{A} = \frac{\sigma_{A}}{A\sigma_{H}} = \frac{N_{A}L_{H}}{AN_{H}L_{A}} \end{array}$ 

- $L_{A,H}$  from inclusive DIS e events, corrected for  $h^+h^-$  efficiency -  $N_{A,H}$  = # of incoherent events
- $\cdot$  CT signature is rise in  $T_{\rm A}$  with  $Q^2$

–  $I_c$  effect can mimic Q²-dependence of  $T_A$  predicted by CT for  $I_c \leq r_A$ 

 $\Lambda t'$ 

# Coherence Length Effects



- coherent nuclear transparency:  $\textbf{T}_{\textbf{c}}\equiv\sigma_A/A~\sigma_N$ 

- opposite  $I_c$  dependence
  - $\Rightarrow$  cannot mimic Color Transparency
- $T_c$  can **no longer** be associated directly with probability of escape from nucleus  $\Rightarrow T_c$  is ratio of  $\sigma_A/\sigma_N$ : can exceed unity !

· incoherent nuclear transparency:  $T_{inc} \equiv \sigma_A / A \sigma_N$ 

- ISI increase with  $I_c$  for  $I_c \leq r_{\text{A}}$ 
  - $\Rightarrow$  can mimic Q²-dependence of  $\mathsf{T}_{\mathsf{inc}}$  predicted by Color Transparency

study T=T(Q<sup>2</sup>) while keeping  $I_c$  fixed  $\Rightarrow$  disentangle CL from CT effects

# HERMES acceptance in $Q^2$ vs $I_c$



- allows 2-dim analysis
- $\langle Q^2 \rangle = 1.7 \text{ GeV}^2; \langle I_c \rangle = 2.7 \text{ fm}$
- same kinematics for coherent and incoherent ρ<sup>0</sup>, except:
  - coherent:  $|t'| < 0.045 \ GeV^2$

- incoherent:  $0.09 < \left| t^{\prime} \right| < 0.4 \ GeV^2$ 

- limited region used:
  - lower  $I_c \ \rightarrow acceptance \ corrections \ get \ large$
  - higher  $I_c \rightarrow Q^2$  range gets too small

# Color Transparency



Common fit at fixed I<sub>c</sub> yields positive slope of Q<sup>2</sup>-dependence of nuclear transparency in nitrogen HERMES collaboration, PRL 90, 052501 (Feb 2003)
 ⇒ signature of Color Transparency B.Z. Kopeliovich et al., PR C65, 035201 (2002)

| Data sample | Measured Q <sup>2</sup> slope | Prediction |
|-------------|-------------------------------|------------|
| coherent    | $0.070 \pm 0.021 \pm 0.012$   | 0.060      |
| incoherent  | $0.089 \pm 0.046 \pm 0.008$   | 0.048      |

# Summary

- Exclusive  $ho^0$  production: virtual  $\gamma^\star o q \overline{q}$ 
  - lifetime given by Heisenberg assuming  $M_{q\bar{q}} = M_{\rho^0}$
  - interacts like a  $\rho^{0}$
- t' slope parameter b agrees with  $r_A^2 \sim A^{2/3}$
- size of virtual  $\gamma^*$  controlled via Q<sup>2</sup> (photon shrinkage)
- strong coherence length effects in  $\sigma^{A}_{\mbox{ coh}}$  /  $\sigma^{A}_{\mbox{ incoh}}$
- intricate mixture of coherence and formation length effects
  - different appearance for coherent and incoherent  $\rho^{0}\,\text{production}$
  - can mimic CT effects (incoherent)
  - can obscure clean observation of CT effect (coherent)
- for clean observation of CT: study variation of T with Q<sup>2</sup> for fixed  $I_c$
- new evidence (3.4  $\sigma$ ) of CT in exclusive  $\rho^0$  production