
PCI Device Communication in LabVIEW
This document describes the procedures required to communicate with the PCI device
through LabVIEW using C library files. The C library files and the LabVIEW VI's were
developed under Red Hat Linux 8.0 (kernel version 2.4.20-13.8) using astropci v1.7
device driver files. Sections I, II, and VII of this document are taken from Voodoo and
Device Driver Programmer's Reference Manual by Scoot Streit which were modified for
our programming environment.

Joseph Paul
japaul@umich.edu

August 8, 2003

I. Device Driver Installation
In order for the device driver to function properly, you must append the following line to
the LILO:

mem=xxxM

where xxx is the amount of RAM you do not want to use for an image buffer. For
example, if your computer has 128MB of RAM and you want to have a 28MB image
buffer, you must append the following line in LILO:

mem=100M

Example:

1. Become a superuser

2. Edit /boot/grub/grub.conf and append the mem=100M line:

 title Red Hat Linux (2.4.20-13.8)
 root (hd1,5)
 kernel /boot/vmlinuz-2.4.20-13.8 ro root=LABEL=/1 hdd=ide-scsi mem=100M
 initrd /boot/initrd-2.4.20-13.78.img

3. Reboot the computer.

1. Create a directory where you want to store the driver files.

2. Copy the driver tar file to the new directory and unpack it:

$ tar zxvf astropci_linux.tar.gz

3. Since the driver files are not compiled for the Red Hat 8.0 kernel, you must compile
your own driver modules.

First remove the all existing modules:

$ rm *.o

Then compile your own modules by the command:

$ make

Become a superuser and then run the installation script:

$./astropci_load

Please note that astropci_load script must be run after every system reboot, since
the driver has no support for loading the driver at system startup.

4. Before the system shutdown, unload the driver:

$./astropci_unload

II. PCI Device Communication in C
There are three device driver entry points (functions) for sending instructions to the PCI
device. These functions are open(), close(), and ioctl().

1. To open up a connection to the PCI device, open() function is used. This function
requires the system file fnctl.h. This function returns an integer (PCI file descriptor)
which is used to establish further communications with the PCI device.

open

SYNOPSIS
#include <fnctl.h>

int open(const char *device node, int mode)

ARGUMENTS
device node This is one of the nodes /dev/astropci0 or /dev/astropci1. These

nodes are created during the driver installation process and
correspond to the PCI board 1 and 2 depending on the number
of boards you have.

mode This is the constant O_RDWR (Open for reading and writing)
supplied by the system file fcntl.h.

DESCRIPTION
Open a connection with the PCI device.

RETURN VALUE
Some positive integer for success (usually 3 in a C program, 17 in
LabVIEW), -1 for failure.

2. To close the connection with the PCI device, close() function is used. This must be
done before the program is terminated to avoid possible program errors.

close

SYNOPSIS
int close(int pci_fd)

ARGUMENTS
pci_fd The integer returned from the open() function.

DESCRIPTION
Close the connection with the PCI device.

RETURN VALUE
0 for success, -1 for failure.

3. To send instructions to the PCI device, ioctl() function is used.

ioctl

SYNOPSIS
int ioctl(int pci_fd, int command, int *cmd_data)

ARGUMENTS
pci_fd The integer returned from the open() function.

command This is one of the commands described below.

cmd_data This an array of six integers used to send parameters and receive
values associated with the execution of the specified command.

DESCRIPTION
Send commands to the PCI device. Reply value associated with the
commands is always stored in the first element of the cmd_data array,
cmd_data[0].

RETURN VALUE
0 for success, -1 for failure.

List of commands that were used in developing the LabVIEW program:

ASTROPCI_GET_PROGRESS (0x2)
Get the current pixel count.

ASTROPCI_COMMAND (0x15)
Sends one of the ASCII commands to either the timing board or
the utility board. Please refer to the Voodoo manual for a
complete list of ASCII commands.

Example codes:

/***
* Name: TestPCI.c
* Author: Joseph A. Paul
* Date: 07/15/2003
*
* Description: The following code will open and close the connection with the PCI
* device.
*
***/

#include <stdio.h>
#include <string.h>
#include <fcntl.h>

int main()
{
 int pci_fd; /* PCI file descriptor */
 char *pci_dev = "/dev/astropci0"; /* PCI device node */

 /* Open a connection to the PCI and get the PCI file descriptor */

 pci_fd = open(pci_dev, O_RDWR);

 printf("Opening connection with the PCI device... ");

 if (pci_fd == -1)
 printf("failed\n");
 else {
 printf("OK\n");
 printf("The PCI file descriptor is: pci_fd = %d\n", pci_fd);
 }

 printf("Closing connection with the PCI device... ");
 if (close(pci_fd) == -1)
 printf("failed\n");
 else
 printf("OK\n");

}

/***
* Name: memRead.c
* Author: Joseph A. Paul
* Date: 07/15/2003
*
* Description: This program will read the image dimensions on the controller
* by sending RDM to the timing board. The column dimensions are at
* Y:1 and the row dimensions are at Y:2.
*
***/

#include <stdio.h>
#include <string.h>
#include <fcntl.h>
#include <stropts.h>
#include <unistd.h>
#include <errno.h>
#include <sys/mman.h>

int main()
{

 int pci_fd;
 char *pci_dev = "/dev/astropci0";
 int cmd_data[6];
 int i;

 /* Open connection to the PCI device */

 if (-1 == open(pci_dev, O_RDWR))
 printf("\n\tOpening connection with the PCI device ... failed\n");
 else
 printf("\n\tOpening connection with the PCI device ... OK\n\n");

 /* Read the memory locations using the ioctl command */

 cmd_data[0] = ((0x2 << 8) | 3); /* 0x2 for timing board */
 cmd_data[1] = 0x0052444D; /* RDM command */
 cmd_data[2] = (0x400000 | 0x0001); /* 0x400000 for Y memory */
 cmd_data[3] = -1;
 cmd_data[4] = -1;
 cmd_data[5] = -1;

 for(i=1; i<3; i++) {

 cmd_data[0] = ((0x2 << 8) | 3);
 cmd_data[2] = (0x400000 | i);

 if (ioctl_return == ioctl(pci_fd, 0x15, &cmd_data))
 printf("\n\tioctl call failed");
 else {
 printf("\tReply @ Address 0x000%d", i);
 printf(": 0x%X \n", cmd_data[0]);
 }

 }

 /* Close connection to the PCI device */

 if (-1 == close(pci_fd))
 printf("\n\tClosing connection with the PCI device ... failed\n\n");
 else
 printf("\n\tClosing connection with the PCI device ... OK\n\n");

}

Notes on compiling the C code:

To compile a C source file “TestPCI.c” as “TestPCI”, type:

$ gcc -o TestPCI TestPCI.c

To run the program, type:

$./TestPCI

III. PCI Device Communication in
LabVIEW
Since the Linux version of LabVIEW does not support low level system device driver
calls, LabVIEW cannot communicate directly with the PCI device. Instead, C functions
in C library files are called using the Call Library Function Node in LabVIEW to
establish a connection with the PCI device. A complete list of C library files currently
used by the LabVIEW program is available in the section IV. C Library Files.

Call Library Function Node

For example, to open a connection with the PCI device and get the PCI file descriptor in
LabVIEW, you must call the function get_pci_fd() which is contained in the
pci_setup.so library file.

Example 1: Open and close connection with the PCI device in LabVIEW

Start LabVIEW and place a Call Library Function Node in the diagram. Double click
on the Call Library Function Node icon. A new window should pop up.

Figure 3.1. Call Library Function Node Window.

First we choose which library file to call. Click on the Browse button and choose the
pci_setup.so file. Now we must specify which function to call from this library file.
Type get_pci_fd in Function Name box.

Now we will set the return type of the function. Make sure that return type is selected
for the Parameter. Since the get_pci_fd() function returns an integer, choose Numeric
for Type, and choose Signed 32-bit Integer for Data Type. Now the Function
Prototype box should look like:

long get_pci_fd(void);

The idea is to get the Function Prototype to match the declaration of the function in the
library file. For example, get_pci_fd() is declared as:

int get_pci_fd(void);

in the pci_setup.so library file.

Now place another Call Library Function Node in the diagram, and set it up as shown
in Figure 3.2.

Figure 3.2. Call Library Function Node Window.

The close_pci requires that a pci_fd to be passed onto the function. You can set this by

clicking on the Add a Parameter After button. You will see arg1 in the Parameter box.
Rename it to pci_fd. Choose Numeric for Type and Signed 32-bit Integer for Data
Type.

Now create two numeric indicators. Wire the numeric indicators and the function nodes
as shown in Figure 3.3.

Figure 3.3.

Now run the VI and you should get some positive integer (usually 17) for the PCI File
Descriptor and a 0 indicating a success for the PCI Connection Close Status.

Example 2: Reading number of columns in the image

To read the number of image columns, we must read the Y:1 memory (Y:2 is the image
rows) on the timing board. To do this we need to send the RDM (Read Memory)
command to the PCI device using ioctl(). However, ioctl() requires an array to be passed
into the function, which requires the use of a pointer.

To avoid complications using pointers in LabVIEW, DSPCommand.so library file is
used. DSPCommand.so requires only integer parameters to be passed into the function.
It handles construction of an array and passes its pointer to ioctl() inside the functions
themselves in the DSPCommand.so library file.

For each of the ASCII Commands, there is a fixed number of arguments which is

required to be passed into the ioctl(). For example, RDM requires one argument. The
function we want to use is then doCommand1(). The code for doCommand1() is shown
below.

int cmd_data[6];
#define ASTROPCI_COMMAND 0x15
#define UNDEFINED -1

int doCommand1(int pci_fd, int board_id, int command, int arg1)
{
 cmd_data[0] = ((board_id << 8) | 3);
 cmd_data[1] = command;
 cmd_data[2] = arg1;
 cmd_data[3] = UNDEFINED;
 cmd_data[4] = UNDEFINED;
 cmd_data[5] = UNDEFINED;

 ioctl(pci_fd, ASTROPCI_COMMAND, &cmd_data);
 return cmd_data[0];
}

To call the doCommand1() in LabVIEW, open the VI created in Example 1 and add an
another Call Library Function Node in the diagram.

Figure 3.4.

Double click on the Call Library Function Node icon and set it up as show in Figure
3.4.

Now we must send the pci_fd, board_id, command, and arg1 to this function. For
reading a memory location on the timing board, we need to send:

pci_fd An integer value obtained by calling the get_pci_fd() function.
board_id 0x2 for timing board.
command 0x0052444D for RDM
arg1 0x400001 for Y:1. 0x400000 | 0x0001

Figure 3.5.

Now create a new numeric indicator to see display the reply (number of image columns)
from the doCommand1(). Also create constants necessary for inputs into the
doCommand1() function and wire them as shown in Figure 3.5

Now run the VI and you should see the number of image columns.

IV. C Library Files
Since the Linux version of LabVIEW does not support low level system device driver
calls, communication with the PCI device must be done through C functions.

Here is the list of C library files currently used by LabVIEW. Some of these files are
modified versions of the C library files from the API Test code.

pci_setup.so

get_pci_fd

SYNOPSIS
int get_pci_fd(void)

ARGUMENTS
none

DESCRIPTION
Open a connection with the PCI device and get the PCI file descriptor.

RETURN VALUE
If successful, PCI file descriptor is returned. (usually 3 in C program, 7 in
LabVIEW) Otherwise, -1 is returned.

close_pci

SYNOPSIS
int close_pci(int pci_fd)

ARGUMENTS
pci_fd PCI file descriptor

DESCRIPTION
Close with connection with the PCI device.

RETURN VALUE
If successful, 0 is returned. Otherwise, -1 is returned.

LoadDspFile.so

loadFile

SYNOPSIS
int loadFile(int pci_fd, const char *filename, const char *expected_file_type)

ARGUMENTS
pci_fd PCI file descriptor
*filename Name of the file to load. This is usually tim.lod.
*expected_file_type The controller board to load the file into.

May be "timing" or "utility".

DESCRIPTION
Used to load the timing file onto the timing board.

RETURN VALUE
If successful, 0 is returned. Otherwise, -1 is returned.

DSPCommand.so

pciCommand

SYNOPSIS
int pciCommand(int pci_fd, int command)

ARGUMENTS
pci_fd PCI file descriptor
command One of the commands such as ASTROPCI_GET_PROGRESS,

ASTROPCI_GET_HSTR, etc.

DESCRIPTION
Used to send one of the commands such as ASTROPCI_GET_PROGRESS,
ASTROPCI_GET_HSTR, etc. to the PCI device.

RETURN VALUE
If successful, expected data type is returned. For example, if
ASTROPCI_GET_PROGRESS command was sent, current pixel count
would be returned. Otherwise, -1 is returned.

doCommand

SYNOPSIS
int doCommand(int pci_fd, int board_id, int command)

ARGUMENTS
pci_fd PCI file descriptor
board_id 0x2 for the timing board, 0x3 for the utility board.
command One of the ASCII commands.

DESCRIPTION
Used to send an ASCII command which requires no arguments to the PCI
device.

RETURN VALUE
If successful, expected data type is returned. Usually this is the reply DON
(0x00444F4E). Otherwise, -1 is returned.

doCommand1

SYNOPSIS
int doCommand1(int pci_fd, int board_id, int command, int arg1)

ARGUMENTS
pci_fd PCI file descriptor
board_id 0x2 for the timing board, 0x3 for the utility board.
command One of the ASCII commands.
arg1 First argument required by the ASCII command.

DESCRIPTION
Used to send an ASCII command which requires one argument to the PCI
device.

RETURN VALUE
If successful, expected data type is returned. Usually this is the reply DON
(0x00444F4E). Otherwise, -1 is returned.

doCommand2

SYNOPSIS
int doCommand1(int pci_fd, int board_id, int command, int arg1, int arg2)

ARGUMENTS
pci_fd PCI file descriptor
board_id 0x2 for the timing board, 0x3 for the utility board.
command One of the ASCII commands.
arg1 First argument required by the ASCII command.
arg2 Second argument required by the ASCII command.

DESCRIPTION
Used to send an ASCII command which requires two arguments to the PCI
device.

RETURN VALUE
If successful, expected data type is returned. Usually this is the reply DON
(0x00444F4E). Otherwise, -1 is returned.

doCommand3

SYNOPSIS
int doCommand1(int pci_fd, int board_id, int command, int arg1, int arg2,
int arg3)

ARGUMENTS
pci_fd PCI file descriptor
board_id 0x2 for the timing board, 0x3 for the utility board.
command One of the ASCII commands.
arg1 First argument required by the ASCII command.
arg2 Second argument required by the ASCII command.
arg3 Third argument required by the ASCII command.

DESCRIPTION
Used to send an ASCII command which requires three arguments to the PCI
device.

RETURN VALUE
If successful, expected data type is returned. Usually this is the reply DON
(0x00444F4E). Otherwise, -1 is returned.

doCommand4

SYNOPSIS
int doCommand1(int pci_fd, int board_id, int command, int arg1, int arg2, int
arg3, int arg4)

ARGUMENTS
pci_fd PCI file descriptor
board_id 0x2 for the timing board, 0x3 for the utility board.
command One of the ASCII commands.
arg1 First argument required by the ASCII command.
arg2 Second argument required by the ASCII command.
arg3 Third argument required by the ASCII command.

arg4 Fourth argument required by the ASCII command.

DESCRIPTION
Used to send an ASCII command which requires four arguments to the PCI
device.

RETURN VALUE
If successful, expected data type is returned. Usually this is the reply DON
(0x00444F4E). Otherwise, -1 is returned.

Memory.so

create_memory

SYNOPSIS
int create_memory(int pci_fd, int rows, int cols, int bufferSize)

ARGUMENTS
pci_fd PCI file descriptor.
rows Number of row pixels in the image.
cols Number of columns pixels in the image.
BufferSize Size of the image buffer. This is 2200*2200*2 by default.

DESCRIPTION
Create an image buffer.

RETURN VALUE
If successful, integer value of the image buffer location is returned. This
value is passed onto other functions and casted as a pointer. Otherwise, -1 is
returned.

free_memory

SYNOPSIS
int free_memory(int mem_fd, int bufferSize)

ARGUMENTS
mem_fd Integer value of the image buffer location. This is casted as a

pointer in the function.
BufferSize Size of the image buffer. This is 2200*2200*2 by default.

DESCRIPTION

Create an image buffer.

RETURN VALUE
If successful, 0 is returned. Otherwise, -1 is returned.

Deinterlace.so

deinterlace

SYNOPSIS
int deinterlace(int cols, int rows, int image_fd, int algorithm)

ARGUMENTS
cols Number of columns pixels in the image.
rows Number of row pixels in the image.
image_fd Integer value of the image buffer location. This is casted as a

pointer in the function.
algorithm Deinterlacing algorithm.

1 split-parallel
2 split-serial
3 quad CCD
4 quad IR
5 CDS quad IR

DESCRIPTION
Deinterlace the image stored in the image buffer.

RETURN VALUE
If successful, 0 is returned. Otherwise, -1 is returned.

FiltsFile.so

writeFitsFile

SYNOPSIS
void writeFitsFile(int rows int cols, int exptime, const char *image_name, int
mem_fd)

ARGUMENTS
cols Number of columns pixels in the image.
rows Number of row pixels in the image.

Exptime Exposure time in milliseconds.
mem_fd Integer value of the image buffer location. This is casted as a

pointer inside the function. Same as the image_fd.
*image_name Name of the fits file to be created.

DESCRIPTION
Write a FITS file of the image stored in the image buffer to the hard drive.

RETURN VALUE
none

Some notes on library files:
There are two types of library files. Static library and dynamically linked library (DLL).
A library file contains functions which can be loaded into a program. Loading of DLL is
done at run time rather than at compile time (this is static library). This means that when
a DLL is modified, the program need not be recompiled. DLL files are called SO (shared
object) under Linux.

To compile a shared object file DSPCommand.so using the DSPCommand.c source file,
type:

$ gcc -shared -o DSPCommand.so DSPCommand.c

-shared tells the compiler that DSPCommand.c should be compiled as a shared object,
and -o DSPCommand.so tells the compiler to create a file named DSPCommand.so.

V. DSP Command VI's
Since the ASCII commands such as RDM and WRM are used many times in the
LabVIEW program, sub-VI's were created. For example, the structure of RDM .vi is
shown in Figure 5.1.

Figure 5.1. WRM sub VI.

So whenever a WRM command is required, WRM.vi would be called from the main VI
and pci_fd, board_id, memory address, memory type, and the data would be passed onto
the WRM.vi.

Here is the complete list of the VI currently used for some of the ASCII commands.
These files are located in the DSPCommand directory.

WRM (Write Memory)

Inputs

PCI File Descriptor PCI File Descriptor obtained by open() function.

Board ID May be one of the following:
0x2 Timing board
0x3 Utility board

Memory Type May be one of the following:
P (0x100000) Program
X (0x200000)
Y (0x400000)
R (0x800000) ROM

Memory Address The memory location which you want to read.

Data Data that you want to write to that memory
location.

Output

Reply 0x00444F4E if successful.

RDM (Read Memory)

Inputs

PCI File Descriptor PCI File Descriptor obtained by open() function.

Board ID May be one of the following:
0x2 Timing board
0x3 Utility board

Memory Type May be one of the following:
P (0x100000) Program
X (0x200000)
Y (0x400000)
R (0x800000) ROM

Memory Address The memory location which you want to read.

Output

Reply Value at the specified memory location.

PON (Power On)

Inputs

PCI File Descriptor PCI File Descriptor obtained by open() function.

Board ID May be one of the following:
0x2 Timing board
0x3 Utility board

Output

Reply 0x00444F4E if successful.

SET (Set Exposure Time)

Inputs

PCI File Descriptor PCI File Descriptor obtained by open() function.

Exposure Time Exposure time in milliseconds.

Output

Reply 0x00444F4E if successful.

SEX (Start Exposure)

Inputs

PCI File Descriptor PCI File Descriptor obtained by open() function.

Output

Reply 0x00444F4E if successful.

VI. Sequence of DSP Commands
The general sequence of DSP commands for capturing an image can be outlined as
follows:

1. Open connection with the PCI device and get the pci_fd using get_pci_fd() in
pci_setup.so.

2. Perform the setup commands sequence. (controllerSetup.vi)

1. Set the image dimensions
WRM at Y:1 and Y:2

2. Load the timing file to the timing board.
LoadFile() in LoadDspFile.so

3. Power On
PON

3. Perform the exposure commands sequence. (exposeDeinterlaceWrite.vi)

1. Create an image buffer to store the image.
create_memory() in Memory.so

2. Set exposure time in milliseconds.
SET

3. Start Exposure.
SEX

4. While reading out the image data, get the current pixel count and update
the progress bar.

Send ASTRO_GET_PROGRESS using pciCommand() in
DSPCommand.so

5. Deinterlace the image data stored in the image buffer.
deinterlace() in Deinterlace.so

6. Clear the image buffer.
free_memory() in Memory.so

4. Close the device driver connection using close_pci() in pci_setup.so.

Currently, the entire DSP commands sequence can be performed by first running
controllerSetup.vi and then running exposeDeinterlaceWrite.vi.

VII. DSP and Driver Reply
The full list of DSP and driver replies:

ASCII Reply Hex Equivalent Description
DON 0x00444F4E Done
ERR 0x00455252 Error
SYR 0x00535952 System Reset
TOUT 0x544F5554 Timeout
NO REPLY 0xFFFFFFFF Reply Buffer Empty

