The MUSE experiment: addressing the proton radius puzzle via elastic muon scattering

Wolfgang Lorenzon

University of Michigan (22-August-2019)

- The Proton Radius Puzzle
 - How do we measure the radius ?
- What is the problem ?
- How do we solve it: MUSE ?

2

- The Proton Radius Puzzle (PRP) has garnered a lot of interest!
- Not just interesting:
 - Tests our theoretical understanding of proton
 - Directly related to the strength of the Strong Interaction (QCD)
- What exactly is the puzzle?

How do you measure proton radius?

Scattering experiments

(Hofstadter @ Stanford: 1950s - electron scattering)

• Atomic Energy Levels

 $\Delta E_1 = \frac{2\pi\alpha}{3} \left| \phi^2(0) \right| \left\langle r_E^2 \right\rangle$

- Lamb Shift: Finite size of proton changes hydrogen energy levels
- Extract from hydrogen spectroscopy

Electron Scattering Measurements (1950s)

Robert Hofstadter (1915 - 1990)

1961: Nobel prize Physics:

"for his pioneering studies of **electron scattering** in atomic nuclei and for his consequent discoveries concerning the **structure of nucleons**"

 $r_E: 0.74(\pm 0.24) \, fm$

Electron Scattering Measurements

• Cross section for ep scattering (Born approximation)

 $\frac{d\sigma}{d\Omega} = \frac{d\sigma}{d\Omega} \bigg|_{Mott} \frac{1}{\varepsilon(1+\tau)} \begin{bmatrix} \tau G_M^2 + \varepsilon G_E^2 \\ \tau G_M^2 + \varepsilon G_E^2 \end{bmatrix}; \text{ with } \tau = \frac{Q^2}{4M^2}; \varepsilon = \begin{bmatrix} 1+2(1+\tau)\tan^2\frac{\theta}{2} \end{bmatrix}^{-1}$

- Classical Rosenbluth separation
 - measure the reduced cross section at several values of ε (angle/beam energy combination) while keeping Q² fixed
 - linear fit to get intercept and slope
- Note: G_M is suppressed at low Q^2 $\rightarrow G_E$ dominates cross section at low Q^2
- Alternatively: direct fits of $G_M(Q^2)$ and $G_E(Q^2)$ to experimental cross section data

Electron Scattering Measurements w/ polarization

- Double polarization in elastic e-p scattering
 - measure recoil polarization or with (vector) polarized target

 $^{1}H(\vec{e},e'\vec{p}), \vec{H}(\vec{e},e'p)$

• A single measurement gives ratio of form factors

Electron Scattering Measurements (2010s)

- Bernauer et al. PRL 105, 242001: world's largest data set
 - fit functional forms to data rather than Rosenbluth separation
- Zhan et al. PLB 705 (2011) 59: Polarization measurements to get G_E/G_M, available over a large Q² range
 - fit(Jlab + world Bernauer) gives radius compatible with Bernauer

The Proton Radius vs Time from ep data

CODATA: Committee on Data for Science and Technology, the international group which publishes the recommended values for fundamental physical constants every four years.

Hydrogen Spectroscopy Measurements

comparing measurements with QED calculations that include corrections for finite size of proton provide indirect but very precise value for $\langle r_E^2 \rangle$

Finite-size shift of atomic energy levels

Orbital pictures from Wikipedia

Pictures: R. Pohl

12

Hydrogen Atom Spectroscopy

$$E_{nS}\simeq -\frac{R_{\infty}}{n^2}+\frac{L_{1S}}{n^3}$$

Lamb shift: $L_{1S}(r_p) = 8171.636(4) + 1.5645 \langle r_p^2 \rangle$ MHz

• 2 measurements required to determine R_{∞} and r_p

A single narrow transition: 1S-2S ($\Delta v = 1.3$ Hz) measured with high accuracy.

Other transitions: natural width ~ MHz.

Each measurement, combined with 1S-2S, yields a correlated pair (R_{∞}, r_p) .

Hydrogen Atom Spectroscopy

 μ H and eH difference is only significant when results are averaged

The Proton Radius vs Time from H Lamb Shift data

The Proton Radius from H Lamb Shift and ep

The Proton Radius from H Lamb Shift and ep

Why Measure with μ H ?

Muonic hydrogen:

muon μ^- + proton p

muon mass $m_{\mu} = 207 \ m_e$ Bohr radius $a_{B,\mu} = 1/207 \ a_{B,e}$

Probability for μ^- to be inside proton:

$$\cong \left(\frac{r_p}{a_{\rm B}}\right)^3 = \left(r_p \alpha\right)^3 m^3$$

 $\rightarrow 207^3 \approx 8 \text{ million}$

muon

muon is **much** more sensitive to proton radius

"delayed" ($t \sim 1 \ \mu$ s)

- beautifully simple, but technically challenging!
- form μ H*(n~14) by shooting μ beam on 1 mbar H₂ target
 - 99% decay to 1S, giving out fast γ pulse
 - 1% decay to longer-lived 2S state
 - S2 state excited to 2P state by tuned laser & decay with release of delayed γ
- vary laser frequency to find transition peak $\rightarrow \Delta E$ (2S to 2P) $\rightarrow r_p$

The Proton Radius from H & μ H Lamb Shift and ep

Proton radius measured with

atomic physics and electron scattering:

muonic hydrogen:

0.8751 ± 0.0061 fm 0.8409 ± 0.0004 fm

Radius from Muonic Hydrogen 4% below previous best value

 \rightarrow 12% smaller (volume), 12% denser than previously believed

• Experimental error in µp measurement ?

R. Pohl et al., Nature 466, 213 (2010): 0.84184 ± 0.00067 fm: 5σ off 2006 CODATA

- Experimental error in µp measurement?
 - seems unlikely
- Experimental error in ep measurements ?
 - both scattering and H-spectroscopy are wrong?
 - $_{\circ}$ Rydberg constant off by 5 σ ?

- Experimental error in µp measurement?
 - seems unlikely
- Experimental error in ep measurements ?
 - both scattering and H-spectroscopy are wrong?
 - Rydberg constant off by 5σ ?
- Theory Error?

#	Contribution	Our selection			Pachucki [31-33]		Borie [34]	
		Ref.	Value	Unc.	Value	Unc.	Value	Unc.
1	NR One loop electron VP	[31, 32]			205.0074			
2	Relativistic correction (corrected)	[31-34]			0.0169			
3	Relativistic one loop VP	[34]	205.0282				205.0282	
4	NR two-loop electron VP	[14,34]	1.5081		1.5079		1.5081	
5	Polarization insertion in two Coulomb lines	[31, 32, 34]	0.1509		0.1509		0.1510	
6	NR three-loop electron VP	[35]	0.00529					
7	Polarisation insertion in two	[35, 36]	0.00223					
	and three Coulomb lines (corrected)							
8	Three-loop VP (total, uncorrected)				0.0076		0.00761	
9	Wichmann-Kroll	[34, 37, 38]	-0.00103				-0.00103	
10	Light by light electron loop contribution	[39]	0.00135	0.00135			0.00135	0.00013
	(Virtual Delbrück scattering)							
11	Radiative photon and electron polarization	[31, 32]	-0.00500	0.0010	-0.006	0.001	-0.005	
	in the Coulomb line $\alpha^2 (Z\alpha)^4$							
12	Electron loop in the radiative photon	[40-42]	-0.00150					
	of order $\alpha^2 (Z\alpha)^4$							
13	Mixed electron and muon loops	[43]	0.00007				0.00007	
14	Hadronic polarization $\alpha(Z\alpha)^4 m_r$	[44-46]	0.01077	0.00038	0.0113	0.0003	0.011	0.002
15	Hadronic polarization $\alpha (Z\alpha)^5 m_r$	[45, 46]	0.000047					
16	Hadronic polarization in the radiative	[45, 46]	-0.000015					
	photon $\alpha^2 (Z\alpha)^4 m_r$							
17	Recoil contribution	[47]	0.05750		0.0575		0.0575	
18	Recoil finite size	[34]	0.01300	0.001			0.013	0.001
19	Recoil correction to VP	[34]	-0.00410				-0.0041	
20	Radiative corrections of order $\alpha^n (Z\alpha)^k m_r$	[19, 32]	-0.66770		-0.6677		-0.66788	
21	Muon Lamb shift 4th order	[34]	-0.00169				-0.00169	
22	Recoil corrections of order $\alpha(Z\alpha)^5 \frac{m}{M}m_r$	[19, 32, 34, 39]	-0.04497		-0.045		-0.04497	
23	Recoil of order α^6	[32]	0.00030		0.0003			
24	Radiative recoil corrections of	[19, 31, 32]	-0.00960		-0.0099		-0.0096	
	order $\alpha(Z\alpha)^n \frac{m}{M}m_r$							
25	Nuclear structure correction of order $(Z\alpha)^5$	[32, 34, 45, 48]	0.015	0.004	0.012	0.002	0.015	0.004
	(Proton polarizability contribution)							
26	Polarization operator induced correction	[46]	0.00019					
	to nuclear polarizability $\alpha(Z\alpha)^5 m_{\pi}$							
27	Radiative photon induced correction	[46]	-0.00001					
	to nuclear polarizability $\alpha(Z\alpha)^5 m_r$							
	Sum		206.0573	0.0045	206.0432	0.0023	206.05856	0.0046

- Experimental error in µp measurement?
 - seems unlikely
- Experimental error in ep measurements ?
 - both scattering and H-spectroscopy are wrong?
 - $_{\circ}$ Rydberg constant off by 5 σ ?
- Theory Error?
 - $_{\circ}$ checked, rechecked, and checked again
 - is framework wrong?

- Experimental error in µp measurement?
 - seems unlikely
- Experimental error in ep measurements ?
 - both scattering and H-spectroscopy are wrong?
 - $_{\circ}$ Rydberg constant off by 5σ ?
- Theory Error?
 - $_{\circ}$ checked, rechecked, and checked again
 - is framework wrong?
- Everybody is correct? New Physics !
 - BSM Physics
 - violation of lepton universality
 - Novel Hadronic Physics
 - ^o proton polarizability affects μ , but not e (effect $\propto m_1^4$)
 - two-photon exchange corrections (effects important at high Q²)

Need More Data

The Quest for New Data

- New data needed to test that the e and µ are really different, and the implications of novel hadronic physics
 - \rightarrow Hadronic: enhanced 2 γ exchange effects

Experiments include

- → redoing atomic hydrogen
- → light muonic atoms for radius comparison in heavier systems
- \rightarrow redoing electron scattering at lower Q²
- → Muon scattering!

The Quest for New Data

- New data needed to test that the e and µ are really different, and the implications of novel hadronic physics
 - \rightarrow Hadronic: enhanced 2 γ exchange effects

- Experiments include
 - → redoing atomic hydrogen
 - → light muonic atoms for radius comparison in heavier systems
 - \rightarrow redoing electron scattering at lower Q²
 - → Muon scattering!

Proton Form Factor Ratio

- All Rosenbluth data from SLAC and Jlab in agreement
- Dramatic discrepancy between Rosenbluth and recoil polarization technique
- Two-photon exchange (TPE) considered best candidate
 - most prominent at high Q² and backward scattering angles, where cross section is suppressed

stand rad cor independent

TPE contributions to rad cor not independent

of hadronic structure

Two-photon exchange: exp. evidence

- TPE can explain form factor discrepancy J. Arrington et al, PRC76, 035205 (2007)
- TPE different for e⁺ and e⁻?
- Are they the same for e and μ ?

The Quest for New Data

- New data needed to test that the e and µ are really different, and the implications of novel hadronic physics
 - \rightarrow Hadronic: enhanced 2 γ exchange effects

- Experiments include
 - → redoing atomic hydrogen
 - → light muonic atoms for radius comparison in heavier systems
 - \rightarrow redoing electron scattering at lower Q²
 - → Muon scattering!

Redoing Atomic Hydrogen

The Quest for New Data

- New data needed to test that the e and µ are really different, and the implications of novel hadronic physics
 - \rightarrow Hadronic: enhanced 2 γ exchange effects

- Experiments include
 - → redoing atomic hydrogen
 - $\rightarrow\,$ light muonic atoms for radius comparison $\,$ in heavier systems
 - \rightarrow redoing electron scattering at lower Q²
 - → Muon scattering!

Light Muonic Atoms

Neutron number N

- CREMA Collaboration moved on to heavier atoms!
- Deuterium radius from μD agrees with μH
 - deuteron charge radius: r_d again 7σ away from CODATA
- Helium isotopes seem to agree (preliminary results)
- Puzzle seen in H & D (Z=1 radius puzzle?)

37

The Quest for New Data

- New data needed to test that the e and µ are really different, and the implications of novel hadronic physics
 - \rightarrow Hadronic: enhanced 2 γ exchange effects

Experiments include

- → redoing atomic hydrogen
- → light muonic atoms for radius comparison in heavier systems
- → redoing electron scattering at lower Q² NB: Many efforts, not an exhaustive list!!!!
- → Muon scattering!

Redoing electron scattering at lower Q²

- Jlab: PRad
 - low intensity beam in Hall B @ JLab into windowless gas target (1.3 billion H events)
 - Preliminary G_E slope favors smaller radius, consistent with µp results!
- Mainz: ISR
 - exploit information in radiative tail
 - dominated by coherent sum of ISR and FSR
 - investigate G_E down to $Q^2 = 10^{-4} \text{ GeV}^2/\text{c}^2$
 - results not precise enough \rightarrow upgrades underway
- LPSC, Grenoble: ProRad
 - New accelerator to be built in France June
 - constrain Q²-dependence of G_E and extrapolation to zero
 - non-magnetic spectrometer, frozen hydrogen wire / film target

The Quest for New Data

Experiments include

- → redoing atomic hydrogen
 - conflicting results: more careful systematics?
- \rightarrow light muonic atoms for radius comparison in heavier systems
 - puzzle seen in H & D, but not in He: (Z=1 radius puzzle?)
- \rightarrow redoing electron scattering at lower Q²
 - many efforts
 - PRad (windowless H_2 gas flow target \rightarrow removes major bkgds) is consistent with µp results!
- → Muon scattering!
 - MUSE (2019-2021)

- plans at COMPASS (100 GeV SPS muon beam: 2021-2023)

µp Scattering – The missing Piece

MUon Scattering Experiment (MUSE) at PSI

Direct comparison of up and ep scattering!

- \rightarrow beam of $e^+/\pi^+/\mu^+$ or $e^-/\pi^-/\mu^-$ on LH₂ target
 - separate particles by TOF, charge by magnets
- \rightarrow charge reversal: test two photon effects
- → absolute cross sections for ep and µp
 use ratio to cancel systematics
- → momenta: 115 210 MeV/c; $Q^2 = 0.002 0.07 \text{ GeV}^2$
- \rightarrow extract G_E and G_M from fits to experimental cross section data

π M1 / MUSE beamline

π**M1**: 100-500 MeV/c RF+TOF separated π, μ, e

MUSE: an unusual Scattering Experiment

- Secondary beam → identify and track beam particles
- Low beam flux (3 MHz)
 → large acceptance, nonmagnetic spectrometer
- Mixed beam → PID in trigger

LH₂ Target (U-M)

Liquid hydrogen target

- \rightarrow 280 ml Kapton cylinder
- \rightarrow full and empty targets

Target chamber in PiM1

45

Target Simulations

Background from target walls and windows can be cleanly eliminated or subtracted

Target Performance

- Target Temperature: 20.67 ± 0.01 K
 - corresponds to a pressure of ~1.1 bar
- Target density: 0.070 g/cm³ (stable to 0.02%)
 - once equilibrium concentration of para (>99%) and ortho (<1%) hydrogen has been reached

Detector Components

MUSE detectors for TOF measurements

Beam hodoscope (TAU, Rutgers)

time resolution 70ps at 99.8% efficiency!

Beam Monitor

(TAU, Rutgers, USC)

Determination of particle flux downstream of target, Moller/Bhabha veto, ToF

Detector Components

MUSE tracking detectors

GEM telescope (HU)

measure location and timing of each incoming particle

Strawtube tracker (HUJI)

better track position resolution (<120µm) than design requirement!

Detector Components

significantly reduces trigger rate from background events

Scintillator wall (USC)

better time resolution (50ps) than design requirement!

Current status

- 18 test runs (2012 2019) (beam studies, detector development, and commissioning) demonstrate simulation agreement & reliable performance
- Construction completed
 - commissioning almost complete
 - 12 months total data-taking in 2019 2021

Two-photon exchange at low Q²

- High precision test of TPE for electron and muons at low Q²
- TPE largest theor. uncertainty in low-energy proton structure
- expect sign change for e⁺ and e⁻

- projected relative uncertainty in µ⁺p to µ⁻p elastic cross sections
- systematics: 0.2%

Comparison of ep to µp cross sections

- projected relative statistical uncertainties in the ratio of ep to µp elastic cross sections (mass difference removed in ratio)
- systematics: 0.5%

• relative statistical uncertainties in the form factors are half as large

Projected sensitivity for MUSE

 absolute radius extraction uncertainty similar to current experiments

 $\sigma(r_{\rm e}), \, \sigma(r_{\mu}) \approx 0.009 \; {\rm fm}$

- radius difference: common uncertainties cancel
 - comparison of μ to e, or μ^+ to μ^- insensitive to many syst. errors

 $\sigma(r_e - r_{\mu}) \approx 0.005 \text{ fm}$

- → almost factor two more sensitive than absolute radius extraction
- → almost factor ten better than current discrepancy

current discrepancy: r_e -r $_{\mu} \approx 0.034$ fm

Summary

- We are still (possibly more) puzzled!
- Proton radius puzzle
 - discrepancy between muonic and electronic measurements remains a serious problem
 - Need new data
- Expect new results in the coming years
- MUSE (w/ electron & muon scattering)
 - give first precise muon scattering results
 - will test existing values of radius
 - will test two photon exchange / proton polarizability
 - lepton universality

Thank you