The MUSE experiment at PSI: Status and Plans

Wolfgang Lorenzon University of Michigan

(for the MUSE collaboration) (27-August-2019)

The Proton Radius Puzzle

- What is the problem ?
- How do we solve it: MUSE ?

This work is supported by

The Proton Radius Puzzle

The Proton Radius Puzzle

What exactly is the puzzle ?

How do you measure proton radius?

• Scattering experiments

(Hofstadter @ Stanford: 1950s -electron scattering)

• Atomic Energy Levels

 $\Delta E_1 = \frac{2\pi\alpha}{3} \left| \phi^2(0) \right| \left\langle r_E^2 \right\rangle$

- Lamb Shift: Finite size of proton changes hydrogen energy levels
- Extract from hydrogen spectroscopy

Electron Scattering Measurements

• Cross section for ep scattering (Born approximation)

 $\frac{d\sigma}{d\Omega} = \frac{d\sigma}{d\Omega} \bigg|_{Mott} \frac{1}{\varepsilon(1+\tau)} \begin{bmatrix} \tau G_M^2 + \varepsilon G_E^2 \\ \tau G_M^2 + \varepsilon G_E^2 \end{bmatrix}; \text{ with } \tau = \frac{Q^2}{4M^2}; \varepsilon = \begin{bmatrix} 1+2(1+\tau)\tan^2\frac{\theta}{2} \end{bmatrix}^{-1}$

- Classical Rosenbluth separation
 - measure the reduced cross section at several values of ε (angle/beam energy combination) while keeping Q² fixed
 - linear fit to get intercept and slope
- Note: G_M is suppressed at low Q^2 $\rightarrow G_E$ dominates cross section at low Q^2
- Alternatively: direct fits of $G_M(Q^2)$ and $G_E(Q^2)$ to experimental cross section data

Hydrogen Spectroscopy Measurements

comparing measurements with QED calculations that include corrections for finite size of proton provide indirect but very precise value for $\langle r_E^2 \rangle$

Hydrogen Atom Spectroscopy

$$E_{nS}\simeq -\frac{R_{\infty}}{n^2}+\frac{L_{1S}}{n^3}$$

Lamb shift: $L_{1S}(r_p) = 8171.636(4) + 1.5645 \langle r_p^2 \rangle$ MHz

• 2 measurements required to determine R_{∞} and r_p

A single narrow transition: 1S-2S ($\Delta v = 1.3$ Hz) measured with high accuracy.

Other transitions: natural width ~ MHz.

Each measurement, combined with 1S-2S, yields a correlated pair (R_{∞}, r_p) .

The Proton Radius from H Lamb Shift and ep

The Proton Radius from H Lamb Shift and ep

Why Measure with µH ?

Muonic hydrogen:

muon μ^- + proton p

muon mass $m_{\mu} = 207 m_e$ Bohr radius $a_{B,\mu} = 1/207 a_{B,e}$

Probability for μ^- to be inside proton:

$$\cong \left(\frac{r_p}{a_{\mathbf{B}}}\right)^3 = \left(r_p \alpha\right)^3 m^3$$

 $\rightarrow 207^3 \approx 8 \text{ million}$

muon

muon is **much** more sensitive to proton radius

The Proton Radius from H & µH Lamb Shift and ep

The Proton Radius Puzzle

Proton radius measured with

atomic physics and electron scattering:

muonic hydrogen:

0.8751 ± 0.0061 fm 0.8409 ± 0.0004 fm

Radius from Muonic Hydrogen 4% below previous best value

 \rightarrow 12% smaller (volume), 12% denser than previously believed

• Experimental error in µp measurement ?

- Experimental error in µp measurement?
 - seems unlikely
- Experimental error in ep measurements ?
 - both scattering and H-spectroscopy are wrong?
 - Rydberg constant off by 5σ ?

- Experimental error in µp measurement?
 - seems unlikely
- Experimental error in ep measurements ?
 - both scattering and H-spectroscopy are wrong?
 - Rydberg constant off by 5σ ?
- Theory Error?

#	Contribution	Our selection			Pachucki [31-33]		Borie [34]	
	AND ADDRESS OF	Ref.	Value	Unc.	Value	Unc.	Value	Unc.
1	NR One loop electron VP	[31, 32]			205.0074			
2	Relativistic correction (corrected)	[31-34]			0.0169			
3	Relativistic one loop VP	[34]	205.0282				205.0282	
4	NR two-loop electron VP	[14,34]	1,5081		1.5079		1.5081	
5	Polarization insertion in two Coulomb lines	[31, 32, 34]	0.1509		0.1509		0.1510	
6	NR three-loop electron VP	[35]	0.00529					
7	Polarisation insertion in two	[35, 36]	0.00223					
	and three Coulomb lines (corrected)							
8	Three-loop VP (total, uncorrected)				0.0076		0.00761	
9	Wichmann-Kroll	[34, 37, 38]	-0.00103				-0.00103	
10	Light by light electron loop contribution	[39]	0.00135	0.00135			0.00135	0.00015
	(Virtual Delbrück scattering)							
11	Radiative photon and electron polarization	[31, 32]	-0.00500	0.0010	-0.006	0.001	-0.005	
	in the Coulomb line $\alpha^2(Z\alpha)^4$							
12	Electron loop in the radiative photon	[40-42]	-0.00150					
	of order $\alpha^2(Z\alpha)^4$							
13	Mixed electron and muon loops	[43]	0.00007				0.00007	
14	Hadronic polarization $\alpha(Z\alpha)^4 m_r$	[44-46]	0.01077	0.00038	0.0113	0.0003	0.011	0.002
15	Hadronic polarization $\alpha(Z\alpha)^5 m_r$	[45, 46]	0.000047					
16	Hadronic polarization in the radiative	[45, 46]	-0.000015					
	photon $\alpha^2 (Z\alpha)^4 m_r$							
17	Recoil contribution	[47]	0.05750		0.0575		0.0575	
18	Recoil finite size	[34]	0.01300	0.001			0.013	0.001
19	Recoil correction to VP	[34]	-0.00410				-0.0041	
20	Radiative corrections of order $\alpha^n (Z\alpha)^k m_r$	[19, 32]	-0.66770		-0.6677		-0.66788	
21	Muon Lamb shift 4th order	[34]	-0.00169				-0.00169	
22	Recoil corrections of order $\alpha(Z\alpha)^5 \frac{m}{M}m_{\tau}$	[19, 32, 34, 39]	-0.04497		-0.045		-0.04497	
23	Recoil of order α^6	[32]	0.00030		0.0003			
24	Radiative recoil corrections of	[19, 31, 32]	-0.00960		-0.0099		-0.0096	
	order $\alpha(Z\alpha)^n \frac{m}{M}m_r$							
25	Nuclear structure correction of order $(Z\alpha)^5$	[32, 34, 45, 48]	0.015	0.004	0.012	0.002	0.015	0.004
	(Proton polarizability contribution)							
26	Polarization operator induced correction	[46]	0.00019					
	to nuclear polarizability $\alpha(Z\alpha)^5 m_r$							
27	Radiative photon induced correction	[46]	-0.00001					
	to nuclear polarizability $\alpha(Z\alpha)^5 m_r$	e 18						
	Sum		206.0573	0.0045	206.0432	0.0023	206.05856	0.0046

- Experimental error in µp measurement?
 - seems unlikely
- Experimental error in ep measurements ?
 - both scattering and H-spectroscopy are wrong?
 - $_{\circ}$ Rydberg constant off by 5 σ ?
- Theory Error?
 - $_{\circ}$ checked, rechecked, and checked again
 - is framework wrong?

- Experimental error in µp measurement ?
 - seems unlikely
- Experimental error in ep measurements ?
 - both scattering and H-spectroscopy are wrong?
 - $_{\circ}$ Rydberg constant off by 5σ ?
- Theory Error?
 - $_{\circ}$ checked, rechecked, and checked again
 - is framework wrong?
- Everybody is correct? New Physics !
 - BSM Physics
 - violation of lepton universality
 - Novel Hadronic Physics
 - ^o proton polarizability affects μ, but not e (effect $\propto m_1^4$)
 - two-photon exchange corrections (effects important at high Q²)

Need More Data

The Quest for New Data

Experiments include

- \rightarrow redoing atomic hydrogen
- → light muonic atoms for radius comparison in heavier systems
- \rightarrow redoing electron scattering at lower Q²
- → Muon scattering!

Redoing Atomic Hydrogen

MPQ (Garching): NEW proton is small in regular hydrogen, too!

LKB (Paris): Prelim. No, it's not!

Systematics need to be carefully determined

µH and eH difference is only significant when results are averaged

The Quest for New Data

Experiments include

- → redoing atomic hydrogen
 - conflicting results: more careful systematics?
- → light muonic atoms for radius comparison in heavier systems
 - puzzle seen in H & D, but not in He: (Z=1 radius puzzle?)
- \rightarrow redoing electron scattering at lower Q²
 - many efforts
 - PRad (windowless H_2 gas flow target \rightarrow removes major bkgds) is consistent with µp results!
- → Muon scattering!
 - MUSE (first muon proton scattering experiment)
 - plans at COMPASS (100 GeV SPS muon beam)

µp Scattering – The missing Piece

MUon Scattering Experiment (MUSE) at PSI

Direct comparison of µp and ep scattering!

- \rightarrow beam of $e^+/\pi^+/\mu^+$ or $e^-/\pi^-/\mu^-$ on LH₂ target
 - separate particles by TOF, charge by magnets
- \rightarrow charge reversal: test two photon effects
- \rightarrow absolute cross sections for ep and µp
 - use ratio to cancel systematics
- → momenta: 115 210 MeV/c → Rosenbluth separation of G_E and G_M
 - $Q^2 = 0.002 0.07 \text{ GeV}^2$

MUSE: an unusual Scattering Experiment

- Secondary beam → identify and track beam particles
- Low beam flux (3 MHz)
 → large acceptance, nonmagnetic spectrometer
- Mixed beam → PID in trigger

LH₂ Target (U-M)

Target system

Liquid hydrogen target

- \rightarrow 280 ml Kapton cylinder
- \rightarrow full and empty targets

Target chamber in PiM1

Target Performance

- Target Temperature: 20.67 ± 0.01 K
 - corresponds to a pressure of ~1.1 bar
- Target density: 0.070 g/cm³ (stable to 0.02%)
 - once equilibrium concentration of para (>99%) and ortho (<1%) hydrogen has been reached

Detector Components

GEM telescope (HU)

Beam hodoscope (TAU, Rutgers, USC)

Time resolution 70ps at 99.8% efficiency!

Measure trajectory of each incoming particle

Detector Components

Beam Monitor (TAU, Rutgers, USC)

Determination of particle flux downstream of target, Moller/Bhabha veto, ToF

Beam veto detector (USC)

Significantly reduces trigger rate from background events

Detector Components

Scintillator wall (USC)

Better time resolution (50ps) than design requirement!

Strawtube tracker (HUJI)

text

Current status

- 18 test runs (2012 2019) demonstrate simulation agreement & reliable performance
- Construction completed
 - commissioning almost complete
 - 12 month total data-taking in 2019 2021

Two-photon exchange at low Q²

- High precision test of TPE for electron and muons at low Q²
- TPE largest theor. uncertainty in low-energy proton structure
- expect sign change for e⁺ and e⁻

 Projected rel uncertainty in μ⁺p to μ⁻p elastic cross sections. systematics: 0.2%

Comparison of ep to µp cross sections

- Projected relative statistical uncertainties in the ratio of ep to µp elastic **cross sections**.
- Systematics ≈ 0.5%

• The relative statistical uncertainties in the form factors are half as large

Projected sensitivity for MUSE

 absolute radius extraction uncertainty similar to current experiments

 $\sigma(r_e), \sigma(r_{\mu}) \approx 0.009 \text{ fm}$

- radius difference: common uncertainties cancel
 - comparison of µ to e, or µ⁺ to µ⁻
 insensitive to many syst. errors

 $\sigma(r_e - r_{\mu}) \approx 0.005 \text{ fm}$

 \rightarrow almost factor two more sensitive

Summary

- We are still (possibly more) puzzled!
- Proton radius puzzle
 - discrepancy between muonic and electronic measurements remains a serious problem
 - Need new data
- Except new results in the coming years
- MUSE (w/ electron & muon scattering)
 - give first precise muon scattering results
 - will test existing values of radius
 - will test two photon exchange / proton polarizability
 - lepton universality

Backup slides

Finite-size shift of atomic energy levels

Orbital pictures from Wikipedia

Pictures: R. Pohl

Hydrogen Atom Spectroscopy

Redoing electron scattering at lower Q²

- Jlab: PRad
 - low intensity beam in Hall B @ JLab into windowless gas target (1.3 billion H events)
 - Preliminary G_E slope favors smaller radius
- Mainz: ISR
 - exploit information in radiative tail
 - dominated by coherent sum of ISR and FSR
 - investigate G_E down to $Q^2 = 10^{-4} \text{ GeV}^2/c^2$
 - results not precise enough \rightarrow upgrades underway
- LPSC, Grenoble: ProRad

 - constrain Q²-dependence of G_E and extrapolation to zero
 - non-magnetic spectrometer, frozen hydrogen wire / film target

MUon Scattering Experiment (MUSE) at PSI

58 MUSE collaborators from 25 institutions in 5 countries:

A. Afanasev, A. Akmal, J. Arrington, H. Atac, C. Ayerbe-Gayoso, F. Benmokhtar,
N. Benmouna, J. Bernauer, A. Blomberg, E. Brash, W.J. Briscoe, E. Cline, D. Cohen,
E.O. Cohen, K. Deiters, J. Diefenbach, B. Dongwi, E.J. Downie, L. El Fassi, S. Gilad,
R. Gilman, K. Gnanvo, R. Gothe, D. Higinbotham, Y. Ilieva, L. Li, M. Jones, N. Kalantarians, M. Kohl, G.
Kumbartzki, J. Lichtenstadt, W. Lin, A. Liyanage, N. Liyanage, W. Lorenzon, Z.-E. Meziani,
P. Monaghan, K.E. Mesick, P. Moran, J. Nazeer, C. Perdrisat, E. Piasetzsky, V. Punjabi,
R. Ransome, R. Raymond, D. Reggiani, P.E. Reimer, A. Richter, G. Ron, T. Rostomyan, A. Sarty,
Y. Shamai, N. Sparveris, S. Strauch, N. Steinberg, V. Sulkosky, A.S. Tadepalli, M. Taragin, and L. Weinstein

George Washington University, Montgomery College, Argonne National Lab, Temple University, College of William & Mary, Duquesne University, Massachusetts Institute of Technology, Christopher Newport University, Rutgers University, Hebrew University of Jerusalem,,Tel Aviv University, Paul Scherrer Institut, Johannes Gutenberg-Universität, Hampton University, University of Michigan, University of Virginia, University of South Carolina, Jefferson Lab, Los Alamos National Laboratory, Norfolk State University, Technical University of Darmstadt, St. Mary's University, Soreq Nuclear Research Center, Ieizmann Institute, Old Dominion University