"SHEDDING LIGHT ON THE DARK SIDE OF THE UNIVERSE WITH LZ"

Virgo cluster

Wolfgang Lorenzon University of Michigan

Supernova 1994D

UNAM Nov 2017

Don'T LET THE BRIGHT LIGHTS FOOL YOU THE DARK SIDE CONTROLS THE UNIVERSE

Dark Matter holds it together

Dark Energy determines its destiny

BIG QUESTIONS

- What is our place in the Universe?
- What is it made of?
- How old is it?
- How has it developed?
- What is its ultimate fate?

WHAT COPERNICUS "KNEW"*

- "First of all, we must note that the universe is spherical." *Elliptical orbits!*
- Motions are centered on the sun Sun is at focus!
- Uniform velocities Equal areas in equal times!

Nicolaus Copernicus (1473 – 1543)

the sun — rather than the Earth — is at the center of the solar system. This is considered among the most important landmarks in the history of modern science.

*It ain't what you don't know, it's what you know that ain't so!

WHAT WE "KNOW"*

- Cold dark matter holds the Universe together we know nothing about it!
- The Universe is dominated by a cosmological term (Dark Energy, cosmological constant, ...) we know less than nothing about it!
- → The ultimate Copernican Revolution 95% of the Universe's mass/energy budget is unknown to us!

*It ain't what you don't know, it's what you know that ain't so!

We're almost free, I just felt the first drops of rain

THE MYSTERIOUS DARK MATTER

- Observations indicate that there is matter out there which does not emit, radiate, or absorb any kind of light
 - does not appear to interact with ordinary matter or itself at all except through gravity!
- One type of evidence for this is the way stars and gas in galaxies move ...

SOLAR SYSTEM ROTATION CURVE

Average Speeds of the Planets

as you move out from the Sun, speeds of the planets drop

as expected: F_{gravitational} = F_{centripical} for planets to stay in orbit

ROTATION CURVES OF GALAXIES

95% of the mass in galaxies is made of an unknown dark matter component

GALAXIES HAVE DARK MATTER HALOES

• dark matter local density: 0.32(0.02) GeV/cm³

(inclusion of new LAMOST data, arXiv:1604.01216)

 solar system is cycling the center of galaxy with an average speed of 220 km/s (annual modulation in earth movement)

SUN'S ORBIT IS SPED UP BY DARK MATTER IN THE MILKY WAY

The gravity of the visible matter in the Galaxy is not enough to explain the high orbital speeds of stars in the Galaxy. For example, the Sun is moving about 60 km/sec too fast. The part of the rotation curve contributed by the visible matter only is the bottom curve. The discrepancy between the two curves is evidence for a **dark matter halo**.

WHAT IS DARK MATTER?

- Does not emit or absorb light in any wavelength
- Visible through gravitational effects only
 - but most models predict that Dark Matter should on rare occasions interact with ordinary matter
- Normal stuff that does not emit light?
 - brown dwarfs or planets, white dwarfs, neutron stars, black holes, dark galaxies and clusters of galaxies?
- Exotic particles?
 - "Hot" Dark Matter: neutrinos?
 - "Cold" Dark Matter: Weakly Interacting Massive Particles?
 WIMPs are about 100 times as heavy as protons
- Incorrect law of gravity?

How does one detect a WIMP?

• Collider Search (production)

- Direct Search: waiting for dark matter reaction with detector material to happen
- Indirect Detection: of particles produced in dark matter annihilation

Direct detection

BSMP

Indirect

detection

Production

at colliders

WIMP – DIRECT DETECTION

Credit: http://cdms.berkeley.edu

WIMP ↔ atomic nucleus in the detector, and detect its recoil (Goodman &Witten, 1985)

- Nuclear Recoil (NR): recoiling energy ≈10 keV
- Electron Recoil (ER): background (WIMP ER signal's energy hugely suppressed)

ELASTIC RECOIL SPECTRUM

Gaitskell, Ann. Rev. Nucl. Part. Sci., 54 (2004) 315

- Spin-independent (SI): coherent scattering on all nucleons (A² enhancement)
- Note: spin-dependent effect can be viewed as scattering with outer unpaired nucleon. No luxury of A² enhancement

NEUTRINO "FLOOR"

- Energy threshold ↓
 => mass DM↓
- neutrinos present an irreducible background to WIMP searches
- ideas do exist how
 to go beyond this
 "floor"
 (directional, annual modulation, etc)
- but pragmatic issue is still how to get there

ANNUAL MODULATION, DIRECTIONALITY

Credit: https://www.hep.ucl.ac.uk/darkMatter/

- Annual modulation of the
 WIMP signal arises
 because the velocity of a
 DM detector through the
 WIMP halo changes as the
 Earth moves around the
 sun
- Seasonal variations of the velocity: ±30 km/s
 => ±5% modulation effects (subtle)

AVAILABLE HIDING SPACE FOR DM

Nature Physics 13, 212 (2017)

A "DARK MATTER RUSH"

BACKGROUNDS: INTERNAL & EXTERNAL

Note: ambient backgrounds are ≈10¹¹x DM rate

DM DETECTION TECHNIQUES

CRYOGENIC LOW THRESHOLD DETECTORS

Cost per kg	Very high*
Difficulty in target scaling	Moderate: build arrays
Radioactive isotope	Ge/Si can be very pure
Position reconstruction ability	iZIP: yes via interdigitated electrodes Surface/volume available via PSD
Selfshielding	Moderate: not monolithic, surface background important
ER background suppression	Excellent if phonon and ionization detection 10 ⁻⁶
Rol	Low mass WIMPs

* difficult to give \$/kg due to significant cost on processing/fabrication.

CRYOGENIC DETECTOR PROGRAM

LIQUID NOBLE DETECTORS

- scalable to large mass
- good detector media: scintillation + charge
- pure, hence radiopure*

Credit: http://periodictable.com/

*except when not: ³⁹Ar, ⁸⁵Kr

SINGLE-PHASE / DUAL-PHASE

 4π scintillation: \rightarrow very high light collection

Time-Projection-Chamber (TPC): → 3-dim position information

LIQUID ARGON DETECTORS

Cost per kg	cheap
Difficulty in scaling	Easy (monolithic detector)
Radioactive isotope	³⁹ Ar (1Bq/kg) except using underground Ar (UAr)
Position reconstruction ability	TPC: excellent (few mm) Single-phase: yes (cm)
Selfshielding	Good
ER background suppression	Excellent via PSD (10 ⁻⁸), additional in TPC
Energy threshold	High (needed for PSD)

LIQUID ARGON PROGRAM

LIQUID XENON DETECTORS

Cost per kg	High: ~\$1500/kg (material only)
Difficulty in scaling	Easy: monolithic
Radioactive isotope	Very pure except ¹³⁶ Xe, other than short lived cosmogenic isotopes
Position reconstruction ability	TPC: excellent (few mm) Single phase: ~cm
Selfshielding	Excellent
ER background suppression	TPC: good with charge/light ratio 0.5% Single phase: moderate with PSD
Rol	Medium to high mass WIMPs

LIQUID XENON PROGRAM

The LZ Collaboration March 2017

36 institutions; about 250 scientists, engineers, and technicians

- 1) Center for Underground Physics (South Korea)
- 2) LIP Coimbra (Portugal)
- 3) MEPhI (Russia)
- 4) Imperial College London (UK)
- 5) STFC Rutherford Appleton Lab (UK)
- 6) University College London (UK)
- 7) University of Bristol (UK)
- 8) University of Edinburgh (UK)
- 9) University of Liverpool (UK)
- 10) University of Oxford (UK)
- 11) University of Sheffield (UK)
- 12) Black Hill State University (US)

- 13) Brookhaven National Lab (US)
- 14) Brown University (US)
- 15) Fermi National Accelerator Lab (US)
- 16) Lawrence Berkeley National Lab (US)
- 17) Lawrence Livermore National Lab (US)
- 18) Northwestern University (US)
- 19) Pennsylvania State University (US)
- 20) SLAC National Accelerator Lab (US)
- 21) South Dakota School of Mines and Technology (US)
- 22) South Dakota Science and Technology Authority (US)
- 23) Texas A&M University (US)

- 24) University at Albany (US)
- 25) University of Alabama (US)
- 26) University of California, Berkeley (US)
- 27) University of California, Davis (US)
- 28) University of California, Santa Barbara (US)
- 29) University of Maryland (US)
- 30) University of Massachusetts (US)
- 31) University of Michigan (US)
- 32) University of Rochester (US)
- 33) University of South Dakota (US)
- 34) University of Wisconsin Madison (US)
- 35) Washington University in St. Louis (US)
- 36) Yale University (US)

LZ = LUX + ZEPLIN

ZEPLIN-III

ZEPLIN pioneered WIMP-search with 2-phase Xe 3.9 ×10⁻⁴⁴ cm²

1.1×10⁻⁴⁶ cm² at 50 GeV/c² (decommissioned in early 2017)

6 kg LXe fid

Scale-up using demonstrated technology and experience for low-risk but aggressive program:

- internal background-free strategy
- some infrastructure inherited from LUX
- LZ expected sensitivity:
 2.3×10⁻⁴⁸ cm² with 3-yr run

Sanford Underground Research Facility

- LZ Here

Scale up ≈ 50 in Fiducial Mass

LZ Total mass – 10 T WIMP Active Mass – 7 T WIMP Fiducial Mass – 5.6 T

+ maintain background-free, low-energy response

LZ Detector Overview

Dual-phase liquid xenon TPC

- 7 T active LXe mass, 146 cm diameter, 146 cm length
- 488 PMTs (247 top, 241 bot) 3" R11410 PMTs (activity ~mBq; high QE)
- TPC lined with high-reflectivity PTFE ($R_{PTFE} \ge 95\%$)
- instrumented "Skin" region optically separated from TPC (180 PMT)

Background Reduction: key design points

- Photomultipliers of ultra-low natural radioactivity
- Low background titanium cryostat
- LUX water shield and an added Gadolinium-loaded liquid scintillator active veto
- Instrumented "skin" region of peripheral xenon as another veto system
- Radon suppression during construction, assembly and operations
- Ultra-low levels of Kr in Xe

The Outer Detector (OD)

- Essential to utilize most Xe, maximize fiducial volume
- Hermetic measurement of penetrating backgrounds
- Segmented tanks installation constraints (shaft, water tank)
- 60 cm thick, 21.5 T of Gadoliniumloaded LAB* liquid scintillator, **OK underground**
- 97% efficiency for neutrons
- Daya Bay legacy, scintillator & tanks (and people)

* Linear AlkylBenzene

Powerful Background Rejection

Simulated single NR scatter in TPC before/after Skin+OD vetoes

- Increases effective fiducial mass from $3.8 \text{ T} \rightarrow 5.6 \text{ T}$
- Internal backgrounds now dominate

Background Control

Intrinsic Contamination Backgrounds

R11410 3" PMTs

R11410 PMT Bases

520 Skin 1" PMTs

20 Skin PMT Base

TPC PTFE

Grid Wires

Grid Holders

Field Shaping Rings

Detector

Environment, co.

- Assay and assess all candidate detector materials and components with many dedicated screening facilities prior to adoption
- Assay techniques:
 - gamma spectroscopy 0
 - mass spectroscopy 0
 - neutron activation 0 analysis(NAA)
 - radon emanation 0 counting
 - alpha spectroscopy 0

	components	TPC Thermometers	0.08	335.50	90.46	38.48	25.02	7.26	3,359	0.06	0.000
to		HV Conduits and Cables	137 7	20	20	0.4	0.55	14	12	0.04	0.001
ιU		HX and PMT Conduits	199.6	3.36	0.48	0.48	0.58	1.24	1.47	0.05	0.001
		Cryostat Vessel	2409.6	1.70	0.14	0.30	0.25	0.10	0.64	0.72	0.014
		Cryostat Seals	33.7	73.91	26.22	3.22	4.24	10.03	69.12	0.45	0.002
		Cryostat Insulation	23.8	18.91	18.91	3.45	3.45	1.97	51.65	0.43	0.007
		Cryostat Teflon Liner	26.0	0.02	0.02	0.03	0.03	0.00	0.12	0.00	0.000
		Outer Detector Tanks	3199.3	0.16	0.39	0.02	0.06	0.04	5.36	0.45	0.001
		Liquid Scintillator	17640.3	0.01	0.01	0.01	0.01	0.00	0.00	0.03	0.000
		Outer Detector PMTs	204.7	570	470	395	388	0.00	534	0.01	0.000
		Outer Detector PMT Supports	770.0	12.35	12.35	4.07	4.07	9.62	9.29	0.00	0.000
		Subtotal (Detector Components)								7.18	0.077
	Xenon	222Rn (1.65 µBq/kg)								597	-
	contaminante	220Rn (0.08 µBq/kg)								101	
	containinantis	natKr (0.015 ppt g/g)								24.5	
		natAr (0.45 ppb g/g)								2.47	-
avironment cosmogenic			-							40.0	0.06
wioninent, cosmogenic,		Fixed Surface Contamination								0.19	0.37
surfac	e contamination	Subtotal (Non-v counts)								776	0.50
		Physics Backgrounds									
		136Χe 2νββ								67	0
	D/	Astrophysical v counts (pp+7Be+13N	ŋ							255	0
	Physics	Astrophysical v counts (8B)								0	0
	backgrounds	Astrophysical v counts (Hep)								0	0.21
	Sastig. Sando	Astrophysical v counts (diffuse super	nova)							0	0.05
		Subtotal (Ebusics backgrounds)	<u>//</u>							322	0.40
		Total								1 100	1 22
		Total (with 99.5% ER discrimination.)	50% NR effici	ency)						1	0.6.
							6.10				

U early

mBq/kg

5.25

2.69

71.63

287.74

137.50

60.50

212.95

30,13

0.02

1.20

2.86

5.49

22.40

Mass (kg)

46.7

71.7

91.9

2.8

6.1

2.2

0.2

104.2

184.0

0.18

92.3

92.5

1.32

U late

mBg/k

0.80

0.24

3.20

75.80

59.38

5.19

108.46

1.55

0.02

0.27

0.83

0.13

8.94

Th early

nBq/k

1.07

0.42

3.12

28.36

16.88

4.75

42.19

3.32

0.03

0.33

0.94

0.32

11.38

Th late

mBq/kg

0.72

0.30

2.99

27.93

16.88

4.75

37.62

3.15

0.03

0.49

0.82

0.26

9.57

Co60

nBq/k

0.03

0.00

2.82

1,43

16.25

24.20

2.23

0.65

0.00

1.60

1.42

0.00

0.35

K40

nBq/kg

3.77

1.36

15.41

69.39

412.50

332.76

123.61

33.12

0.12

0.40

2.82

0.71

19.44

ER (cts)

0.14

0.08

1.46

0.36

0.13

0.02

0.00

1.45

0.06

0.00

0.97

0.27

0.01

R (cts) (

SF rej.)

0.001

0.001

0.013

0.004

800.0

0.001

0.000

0.001

0.008

0.000

0.008

0.004

0.002

Internal Backgrounds

- Rn (and Kr) dominant internal background sources
- Rn:
 - Emanates from most materials
 - 13.4 mBq requirement, 1.3 mBq goal (active region)
 - Rn removal system at UMich
 - Four measurement systems with ~0.1 mBq sensitivity
 - Main assembly laboratory at SURF will have reduced radon air system

- Kr:
 - Remove ⁸⁵Kr to <15 ppq using gas chromatography
- Neutrino-induced backgrounds

Calibrations

Data

H

20

н

42

T Beta+o

- Expand upon successful LUX program (and other experience)
- DD Neutron Generator (Nuclear Recoils)
- Tritiated Methane (Electron Recoils)
- Movable photon sources e.g. tubes penetrating cryostat
- Additional sources e.g. YBe source for low energy (Nuclear Recoils)

Projected LZ Sensitivity – Spin Independent (5.6 T fiducial, 1000 live-days)

43

SPIN-DEPENDENT INTERACTION

• Natural to expect if WIMP has spin:

¹²⁹XE AND ¹³¹XE: SD χ-n COUPLING

Phys. Rev. Lett. 118, 251302 (2017)

- LUX full exposure limit: 1.6x10⁻⁴¹ cm² @35 GeV/c²
- Collider search complementary for lower mass

THE FUTURE: REACHING V FLOOR + BEYOND

- At high WIMP mass:
 - DARWIN: the ultimate WIMP detector (50 ton LXe mass)
 - DarkSide-20K (20 ton UAr @ LNGS) \rightarrow ARGO/DEAP-nT (1kton-year @ ??)
 - crucial technologies: low rad. UAr and SiPMs
- At low WIMP mass:
 - SuperCDMS (Soudan \rightarrow SNOLAB)
 - reduce background, phonon resolution to 10 eV
 - Liquid He
 - Energy threshold 10 meV
- Other avenues (ie, rejecting the WIMP hypothesis)
 - Warm Dark Matter (go to much lower mass)
 - Axion-like particles (matter-antimatter asymmetry in universe)
 - Dark Photons as Dark Matter
 - ^o DM does not interact with know particles at all, but exists in a hidden sector

EXPLORING DARK MATTER WITH DARK PHOTONS

- Dark sector could interact with the standard model sector via a hidden gauge boson (A' or "dark photon" or "para photon" or "hidden photon")
- Dark photons can provide a portal into the dark sector
- Dark photons could couple to standard model matter with α' = αε²

A' produced via a loop mechanism

B. Holdom, PLB **166** (1986) 196 J. D. Bjorken et al, PRD **80** (2009) 075018

 $\epsilon \sim 10^{-2}$ to 10^{-8} from loops of heavy particles

FASTER THAN MOORE

DISCOVERY JUST AROUND THE CORNER?

- In next 5 years, several Generation-2 experiments will turn on and have new results
- Stronger interplay between collider/indirect/direct experiments and the theory community

