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The LZ Collaboration 
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32 institutions          
about 200 people 
still growing 



LZ = LUX + ZEPLIN 
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ZEPLIN-III 

6 kg LXe fid 

LUX 

100 kg 

ZEPLIN 
pioneered 
WIMP-search 
with 2-phase Xe 
3.9 ×10-44 cm2  

+ 
current world 
leader: 2.2×10-46 

cm2 at 50 GeV/c2  
and counting 

→ 
Scale-up using demonstrated 
technology and experience for 
low-risk but aggressive program: 
- internal background-free strategy 
- some infrastructure inherited 

from LUX 
- LZ expected sensitivity:  

3×10-48 cm2 with 3-yr run 

LZ 

5,600 kg 



Sanford Underground Research Facility 

Davis Cavern 1480 m  
(4200 mwe) 

LZ in LUX Water Tank 
South Dakota, USA 
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LZ Here 



Scale up ≈ 50 in Fiducial Mass 
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LUX 

        LZ 
Total mass – 10 T 
WIMP Active Mass – 7 T 
WIMP Fiducial Mass – 5.6 T 

+ maintain background-free, low-energy response 



LZ Detector Overview 
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Cathode 
high voltage 
feedthrough 

Outer 
detector 

PMTs 

Liquid Xe 
heat 

exchanger 

Existing 
water tank 

Gadolinium-loaded 
liquid scintillator veto 

Xenon 
TPC 

7 T active volume 
LXe TPC  / 10 T total 



Dual-phase liquid xenon TPC 
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• 7 T active LXe mass, 146 cm diameter, 146 cm length 
• 494 PMTs (253 top, 241 bot) 3” R11410 PMTs (activity ~mBq; high QE) 
• TPC lined with high-reflectivity PTFE (RPTFE ≥ 95%) 
• instrumented “Skin” region optically separated from TPC (180 PMT) 



Background Reduction:  
key design points 
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• Photomultipliers of ultra-low natural radioactivity 

• Low background titanium cryostat 

• LUX water shield and an added Gadolinium-loaded liquid scintillator 

active veto 

• Instrumented “skin” region of peripheral xenon as another veto 

system 

• Radon suppression during construction, assembly and operations 

• Unprecedented levels of Kr removal from Xe 



Performance Drivers 
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• 5.8 keVnr S1 threshold (4.5 keVnr LUX)  

• 0.35 kV/cm drift field, 99.5% ER/NR disc.  
    (already surpassed in LUX at 0.2 kV/cm) 



The Outer Detector (OD) 

• Essential to utilize most Xe, maximize 
fiducial volume 

• Hermetic measurement of penetrating 
backgrounds 

• Segmented tanks – installation 
constraints (shaft, water tank) 

• 60 cm thick, 21.5 T of Gadolinium-
loaded LAB* liquid scintillator,  
OK underground 

• 97% efficiency for neutrons 
• Daya Bay legacy, scintillator & tanks 

(and people) 

9 * Linear AlkylBenzene 



Powerful Background Rejection  
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Simulated single NR scatter in TPC before/after Skin+OD vetoes 

    LXe TPC only     w/LXe skin + OD 

• Increases effective fiducial mass from 3.8 T → 5.6 T 
• Internal backgrounds now dominate 

fiducial 
mass: 
3.8 T 

fiducial 
mass: 
5.6 T 



Control of Internal Backgrounds 
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• Rn (and Kr) dominant internal background sources 
    

• Rn: 
o Emanates from most materials 
o 20 mBq requirement, 1 mBq goal 

 Rn removal system at UMich 
o Four measurement systems with ~0.1 mBq 

sensitivity 
o Main assembly laboratory at SURF will have 

reduced radon air system 
• Kr: 

o Remove 85Kr to <15 ppq  
(10-15 g/g) using gas  
chromatography (best  
LUX batch 200 ppq) 

o Setting up to process  
200 kg/day at SLAC 

Chromatography from column 

UMich system 



• Expand upon successful LUX program (and other experience) 
• DD Neutron Generator (Nuclear Recoils) 
• Tritiated Methane (Electron Recoils) 
• Movable photon sources e.g. tubes penetrating cryostat 
• Additional sources e.g. YBe source for low energy (Nuclear Recoils) 
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Monochromatic 
2.5 MeV neutrons 

Tritium Beta Spectrum Measured in LUX 

C 

H 

H 
H 

T 

Calibrations  

DD neutron calibration 



Extensive program of prototype development underway, with 
three general approaches: 
 
• Testing in liquid argon, primarily of HV elements at LBNL 

• Design choice and validation in small (few kg) LXe test chambers in many 
locations: LLNL, UC Berkeley, LBNL, U Michigan, UC Davis, Imperial 
College, MEPhI, LIP   (arXiv:1507.01310,  [physics.ins-det], arXiv:1608.01717 [physics.ins-det]) 

• System test platform at SLAC, Phase I about 100 kg of LXe, TPC prototype 
testing ongoing (includes field testing of array of custom made sensors) 
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Detector Prototyping  



Projected LZ Sensitivity – Spin Independent  
(5.6 T fiducial, 1000 live-days) 
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TDR, CD2/3b 
TDR, CD2/3b 

CD1/3a 

Baseline: 
3 x 10-48 cm2 @ 40 GeV/c 2 

Goal: 
1.3 x 10-48 cm2 @ 40 GeV/c 2 



Time Evolution 
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LUX 

Ge, NaI no discrimination 

Ge, w/discrim. 

LXe, w/discrim. 
ZEPLIN-III 

XENON 1T 

LZ  <3×10-48 cm2 

(XENON nT) 

PandaX LUX 2016 
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Timeline 

Year Month Activity 
2012 March LZ (LUX-ZEPLIN) collaboration formed 
2014 July LZ Project selected in US and UK 
2015 April DOE CD-1/3a approval, similar in UK  

       Conceptual Design Report arXiv: 1509.02910 
2016 August DOE CD-2/3b approval expected 
2017 March LUX removed from underground 

August Beneficial occupancy surface assembly building 
2018 June Beneficial occupancy for underground installation 
2019 Underground installation 
2020 April Start operations 
2025+ Planning on 5+ years of operations 
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Summary 

• LZ Project well underway, with procurement of Xe, 
PMTs and cryostat vessels started 

• Extensive prototype program underway 

• LZ benefits from the excellent LUX calibration 
techniques and understanding of background 

• Will explore significant fraction of available phase 
space: 
o WIMP sensitivity 3 × 10-48 cm2 @ 40 GeV/c2 and 

approaching neutrino floor 
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Extra Slides 
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Xe purification and cryogenics 

• Gas phase purification through getter: 
10 tons/2.5 days 

• Trap-enhanced mass spec;  
sensitivity: ~ppt 

• High-efficiency two-phase heat 
exchange 

• LN2 thermosiphon-based cryogenics: 
multiple cooling locations 
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Neutrino Background 



WIMP Signal Region 
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40 GeV WIMP 
1σ 

2σ 
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Non-WIMP physics 

• Effective Field Theory Interaction Decomposition 

• Neutrinoless Double Beta Decay 

• Axions/Axion-like-particles, leptophilic DM, 
fractionally charged particles 

• External Neutrino Physics: 
o Solar 
o Supernova 
o Sterile Neutrino 

 
 
 
 
 



Status and outlook for WIMP detection 

& XENONNT 
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