L-T Separation of Transverse Target Spin Asymmetry In Exclusive Rho Production

Nora Estrada Avetik Hairapetyan and Wouter Deconinck

HERMES Summer Students Session 13th September 2006

Introduction

The measurement of the Transverse Target Spin Asymmetry (TTSA) A_{UT} in the exclusive production of longitudinally polarized ρ^0 mesons on hydrogen, is a good tool to access the generalized parton distribution (GPD) function *E*. Moreover, it might give us some insight in the GPDs of the gluons, because the production amplitude involves exchange processes of quarks and gluons simultaneously.

In this work we contribute releasing the moment $A_{UT}^{\sin(\phi-\phi_s)}$ for the process $\gamma^* p^{\uparrow} \rightarrow \rho^0 p$, separated over ρ_L^0 and ρ_T^0 , using the latest data produced by HERMES.

イロト イヨト イヨト

	Introduction Data Selection Methodology Results Conclusions	Cuts
Data Selection		

- 2005 running period
- hydrogen polarized gas target
- More than two trajectories from vertex (target region -18 < Z < 18)
- 2 oppositely-charged hadrons
- ullet It was also checked that the tracks were not kaons from a ϕ

- 2005 running period
- hydrogen polarized gas target
- More than two trajectories from vertex (target region -18 < Z < 18)
- 2 oppositely-charged hadrons
- ullet It was also checked that the tracks were not kaons from a ϕ

The relevant 4-momenta are:

- Incident electron: k, scattered electron: k'
- Photon: $q \equiv k k'$
- Struck nucleon: P
- Detected hadrons: P_{h^+} and P_{h^-}

< ∃⇒

- 2005 running period
- hydrogen polarized gas target
- More than two trajectories from vertex (target region -18 < Z < 18)
- 2 oppositely-charged hadrons
- ullet It was also checked that the tracks were not kaons from a ϕ
- The relevant 4-momenta are:
 - Incident electron: k, scattered electron: k'
 - Photon: $q \equiv k k'$
 - Struck nucleon: P
 - Detected hadrons: P_{h^+} and P_{h^-}

・ロト ・同ト ・ヨト

- < ∃ →

Cuts

HERMES Apparatus

NoraEstrada HERMES Summer Students Session

・ロン ・回と ・ヨン・

	Introduction Data Selection Methodology Results Conclusions	Cuts
Cuts		

General cuts

- **Data quality cuts**. Properly working detector components and reasonable beam-target polarization (official burst list was used with DQ pattern 401ffffd")
- Vertex cut
- Particle identification and exclusive cuts.

Particular cuts

- T-prime cut. 4 bins with same statistics.
- Target bit cut. Spin up, down.
- $\cos \theta$ cut Further application in analysis

Int Data 1 Met	oduction selection hodology Cuts Results nclusions
Cuts	

General cuts

- **Data quality cuts**. Properly working detector components and reasonable beam-target polarization (official burst list was used with DQ pattern 401ffffd")
- Vertex cut
- Particle identification and exclusive cuts.

Particular cuts

- T-prime cut. 4 bins with same statistics.
- Target bit cut. Spin up, down.
- $\cos \theta$ cut Further application in analysis

THE Method Determination of β_1 and β_2 Determination of A_{UT} inner and outer

ho^0 Reconstruction

TMC1: 1st version of transverse magnet correction (TMC)

TMC2: 2nd version of transverse magnet correction (TMC)

・ロト ・同ト ・ヨト

2

- ∢ ⊒ ▶

THE Method Determination of β_1 and β_2 Determination of A_{UT} inner and outer

Method Description

We use the decay angle θ of the π^+ to get information about the longitudinal polarization of the ρ^0 meson. Assuming that the helicity of the virtual photon is transferred completely to the produced ρ^0 meson.

$$W(\theta) = \frac{3}{4}(1.0 - r_{00}^{04} + (3.0\dot{r}_{00}^{04} - 1)\cos^2(\theta))$$

 r_{00}^{04} : Longitudinal polarization of the ρ^0

(日) (四) (王) (王)

THE Method Determination of β_1 and β_2 Determination of A_{UT} inner and outer

Method Description

We use the decay angle θ of the π^+ to get information about the longitudinal polarization of the ρ^0 meson. Assuming that the helicity of the virtual photon is transferred completely to the produced ρ^0 meson.

$$W(\theta) = \frac{3}{4}(1.0 - r_{00}^{04} + (3.0\dot{r}_{00}^{04} - 1)\cos^2(\theta))$$

 r_{00}^{04} : Longitudinal polarization of the ρ^0

(日) (四) (王) (王)

THE Method Determination of β_1 and β_2 Determination of A_{UT} inner and outer

In principle, with unlimited statistics when we determine the asymmetry A_{UT} for events with $\cos(\theta) = 0$, we have selected the process $\gamma^* p^{\uparrow} \rightarrow \rho_T^0 p$. For events satisfying $|\cos(\theta)| = 1$, the process $\gamma^* p^{\uparrow} \rightarrow \rho_L^0 p$ is selected.

・ロン ・回と ・ヨン・

THE Method Determination of β_1 and β_2 Determination of A_{UT} inner and outer

$$A_{UT}^{inner} = \beta_1 A_{UT}^T + (1 - \beta_1) A_{UT}^L$$

$$A_{UT}^{outer} = \beta_2 A_{UT}^L + (1 - \beta_2) A_{UT}^T$$

・ロン ・回 と ・ ヨ ・ ・ ヨ ・ ・

æ

THE Method Determination of β_1 and β_2 Determination of A_{UT} inner and outer

$$A_{UT}^{inner} = \beta_1 A_{UT}^T + (1 - \beta_1) A_{UT}^L$$
$$A_{UT}^{outer} = \beta_2 A_{UT}^L + (1 - \beta_2) A_{UT}^T$$
$$\downarrow$$
$$A_{UT}^L = \frac{A_{UT}^{outer} \beta_1 + A_{UT}^{inner} (\beta_2 - 1)}{\beta_1 + \beta_2 - 1}$$
$$A_{UT}^T = \frac{A_{UT}^{inner} \beta_2 + A_{UT}^{outer} (\beta_1 - 1)}{\beta_1 + \beta_2 - 1}$$

◆□→ ◆□→ ◆注→ ◆注→ □注

THE Method Determination of β_1 and β_2 Determination of A_{UT} inner and outer

$$A_{UT}^{inner} = \beta_1 A_{UT}^T + (1 - \beta_1) A_{UT}^L$$
$$A_{UT}^{outer} = \beta_2 A_{UT}^L + (1 - \beta_2) A_{UT}^T$$
$$\downarrow$$
$$A_{UT}^L = \frac{A_{UT}^{outer} \beta_1 + A_{UT}^{inner} (\beta_2 - 1)}{\beta_1 + \beta_2 - 1}$$
$$A_{UT}^T = \frac{A_{UT}^{inner} \beta_2 + A_{UT}^{outer} (\beta_1 - 1)}{\beta_1 + \beta_2 - 1}$$

・ロン ・回 と ・ ヨ と ・ ヨ と

æ

THE Method **Determination of** β_1 and β_2 Determination of A_{UT} inner and outer

Determination of β_1 and β_2

$$\beta_{1} = \frac{\int_{-0.5}^{0.5} (1 - X) W(\theta)^{T} d\theta}{\int_{-0.5}^{0.5} (XW(\theta)^{L} + (1 - X)W(\theta)^{T}) d\theta}$$

$$\beta_{2} = \frac{\int_{-1}^{-0.5} XW(\theta)^{L} d\theta}{\int_{-1}^{-0.5} (XW(\theta)^{L} + (1 - X)W(\theta)^{T}) d\theta}$$

$$X = r_{00}^{04}$$

THE Method **Determination of** β_1 and β_2 Determination of A_{UT} inner and outer

Assuming that r_{00}^{04} is the same for polarized target as for unpolarized target...

HERMES DC 24 Draft 5.4

(□) ► < □ ►</p>

THE Method **Determination of** β_1 and β_2 Determination of A_{UT} inner and outer

TMC1					
	Bin 1	Bin 2	Bin 3	Bin 4	
Tprime	0.02141	0.07620	0.1581	0.2898	
r_{00}^{04}	0.41623	0.42399	0.43558	0.45423	
β_1	0.88524	0.88196	0.87695	0.86856	
β_2	0.66626	0.67331	0.68362	0.69973	
TMC2					
Bin 1 Bin 2 Bin 3 Bin 4					
Tprime	0.02063	0.07515	0.1560	0.2867	
r_{00}^{04}	0.41612	0.42384	0.43528	0.453796	
β_1	0.88528	0.88202	0.87708	0.86876	
β_2	0.66616	0.67317	0.68336	0.69936	

・ロン ・回 と ・ ヨ と ・ ヨ と

-2

THE Method Determination of β_1 and β_2 Determination of A_{UT} inner and outer

TMC1 A^{inner}

◆□▶ ◆圖▶ ◆理▶ ◆理▶ -

THE Method Determination of β_1 and β_2 Determination of A_{UT} inner and outer

TMC1 A^{outer}

THE Method Determination of β_1 and β_2 Determination of A_{UT} inner and outer

TMC2 A^{inner}

THE Method Determination of β_1 and β_2 Determination of A_{UT} inner and outer

TMC2 A^{outer}

Results

$$A_{UT}^{L} = \frac{A_{UT}^{outer}\beta_1 + A_{UT}^{inner}(\beta_2 - 1)}{\beta_1 + \beta_2 - 1}$$
$$A_{UT}^{T} = \frac{A_{UT}^{inner}\beta_2 + A_{UT}^{outer}(\beta_1 - 1)}{\beta_1 + \beta_2 - 1}$$

TMC1				
	Bin 1	Bin 2	Bin 3	Bin 4
Auter	0.013115 ± 0.09659	-0.0231192 ± 0.09559	0.0851553 ± 0.0696	-0.139191 ± 0.1045
Ainner	-0.105491 ± 0.125	-0.0519132 ± 0.1229	-0.0236317 ± 0.1140	0.00524414 ± 0.1098
A_{UT}^L	$0.0848868 {\pm} 0.1725$	-0.00617872 ± 0.168	0.146551 ± 0.12649	-0.215505 ± 1699
A_{UT}^T	-0.130171 ± 0.1523	-0.058034 ± 0.1504	-0.0475108 ± 0.1399	$0.0386484 {\pm} 0.137$
TMC2				
	Bin 1	Bin 2	Bin 3	Bin 4
A ^{outer} UT	0.102504 ± 0.09669	0.0821026 ± 0.0929	0.0128155 ± 0.0946	-0.0881018 ± 0.1027
Aunt	-0.0279112 ± 0.1188	0.0516653 ± 0.1236	-0.161044 ± 0.120	0.0839373 ± 0.1096
A_{UT}^L	0.181454 ± 0.171	0.10002 ± 0.164	0.111041 ± 0.1628	-0.179139 ± 0.1675
A_{UT}^{T}	-0.0550403 ± 0.1449	0.0451979 ± 0.1512	-0.199175 ± 0.1479	0.123677 ± 0.137

NoraEstrada HERMES Summer Students Session

・ロト ・回 ト ・ヨト ・ヨト 三日

Results

$$A_{UT}^{L} = \frac{A_{UT}^{outer}\beta_1 + A_{UT}^{inner}(\beta_2 - 1)}{\beta_1 + \beta_2 - 1}$$
$$A_{UT}^{T} = \frac{A_{UT}^{inner}\beta_2 + A_{UT}^{outer}(\beta_1 - 1)}{\beta_1 + \beta_2 - 1}$$

TMC1				
	Bin 1	Bin 2	Bin 3	Bin 4
A ^{outer}	0.013115 ± 0.09659	-0.0231192 ± 0.09559	0.0851553 ± 0.0696	-0.139191 ± 0.1045
Ainner	-0.105491 ± 0.125	-0.0519132 ± 0.1229	-0.0236317 ± 0.1140	$0.00524414 {\pm} 0.1098$
A_{UT}^L	$0.0848868 {\pm} 0.1725$	-0.00617872 ± 0.168	0.146551 ± 0.12649	-0.215505 ± 1699
A_{UT}^{T}	-0.130171 ± 0.1523	-0.058034 ± 0.1504	-0.0475108 ± 0.1399	$0.0386484 {\pm} 0.137$
TMC2				
	Bin 1	Bin 2	Bin 3	Bin 4
A ^{outer}	0.102504 ± 0.09669	0.0821026 ± 0.0929	0.0128155 ± 0.0946	-0.0881018 ± 0.1027
Aut	-0.0279112 ± 0.1188	$0.0516653 {\pm} 0.1236$	-0.161044 ± 0.120	$0.0839373 {\pm} 0.1096$
A_{UT}^L	0.181454 ± 0.171	0.10002 ± 0.164	0.111041 ± 0.1628	-0.179139 ± 0.1675
A_{UT}^{T}	-0.0550403 ± 0.1449	$0.0451979 {\pm} 0.1512$	-0.199175 ± 0.1479	0.123677 ± 0.137

NoraEstrada HERMES Summer Students Session

Results

NoraEstrada HERMES Summer Students Session

Comparisons Among TMC1 and TMC2

Comparisons Among A_{UT}^L and A_{UT}^T

general averages

イロト イヨト イヨト

Conclusions

We separate the transversal and longitudinal components of Transverse Spin Asymmetry in exclusive ρ^0 production, using a method based on the cosine of the decay angle of the π^+ in the ρ^0 center of mass, verifying that all the calculation process in correct we obtain a result of this measurement as follows:

< 🗇 🕨

→ 3 →

Conclusions

We separate the transversal and longitudinal components of Transverse Spin Asymmetry in exclusive ρ^0 production, using a method based on the cosine of the decay angle of the π^+ in the ρ^0 center of mass, verifying that all the calculation process in correct we obtain a result of this measurement as follows:

	A_{UT}^{L}	A_{UT}^T
TMC1	$0.00243852{\pm}0.0796461$	-0.049267 ± 0.0725101
TMC2	$0.053344{\pm}0.0832639$	-0.021335 ± 0.0726509

▲ 同 ▶ | ▲ 臣 ▶

GRACIAS...!

NoraEstrada HERMES Summer Students Session

・ロト ・回ト ・ヨト ・ヨト